www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Orientierung Differentialform
Orientierung Differentialform < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orientierung Differentialform: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 01:58 Di 22.01.2013
Autor: kullinarisch

Aufgabe
Zeige, dass folgende Untermannigfaltigkeiten orientierbar ist. Wähle eine Orientierung

(a) Bizylinderkurve C = [mm] \{ (x, y, z) \in \IR^3 | x^2 + y^2 = 1 , y^2 + z^2 = 2 \} [/mm] .

Hallo! Ich habe mir zunächst folgende Abbildung definiert:

[mm] F:\IR^3 \to\IR^2 [/mm]

[mm] F(x,y,z)=(f_1(x,y,z), f_2(x,y,z)) [/mm]

mit [mm] f_1(x,y,z)= x^2 [/mm] + [mm] y^2-1 [/mm] und  [mm] f_2(x,y,z)=y^2 [/mm] + [mm] z^2 [/mm] -2

Dann gilt: F^(-1)(0,0)=C und (0,0) ist regulärer Wert.

Sei im folgenden [mm] \omega_{\IR^3}=dx\wedge dy\wedge [/mm] dz die standart Orientierung im [mm] \IR^3. [/mm] Also für [mm] v_1, v_2, v_3 [/mm] aus [mm] \IR^3 [/mm] gilt  [mm] \omega_{\IR^3}(v_1,v_2v_3)=det(v_1|v_2|v_3) [/mm]

Nach den oben gegebenen Voraussetzungen ist dann nach einem Satz aus unserer Vorlesung folgende 1- Form eine Orientierung auf C:

[mm] grad(f_1)\neg grad(f_2)\neg\omega_{\IR^3} [/mm] mit [mm] \neg [/mm] soll das innere Produkt gemeint sein http://de.wikipedia.org/wiki/Differentialform#Inneres_Produkt

Jetzt habe ich allerdings Probleme [mm] grad(f_1)\neg grad(f_2)\neg\omega_{\IR^3} [/mm] konkret anzugeben. Ich weiß nur wie man allgemein das innere Produkt von nur EINEM Vektor mit einer n-Form angibt, nämlich:

für [mm] v=(v_1,...,v_n)^T [/mm] und [mm] \omega_{\IR^n} [/mm] Standartorientierung

[mm] v\neg\omega_{\IR^n}=\summe_{i=1}^{n}(-1)^{i+1}v_idx_1\wedge ..\wedge \hat dx_i \wedge..\wedge dx_n [/mm] wobei [mm] \hat dx_i [/mm] bedeutet, dass [mm] dx_i [/mm] weggelassen wird. Wenn man dort n-1 Vektoren einsetzt, entspricht das der Determinante nach Entwicklung der ersten Spalte, welche die Einträge von v sind.

Ich schreibe mal meine kleine Rechnung auf:

mit

[mm] grad(f_1)=(2x, [/mm] 2y, [mm] 0)^T [/mm]   und [mm] grad(f_2)=(0, [/mm] 2y, [mm] 2z)^T [/mm] folgt:


[mm] grad(f_1)\neg grad(f_2)\neg\omega_{\IR^3}= [/mm]

[mm] grad(f_2)\neg(2xdy\wedge dz-2ydx\wedge [/mm] dz)=      ???

[mm] grad(f_2)\neg 2xdy\wedge [/mm] dz - [mm] grad(f_2)\neg 2ydx\wedge [/mm] dz=         ???

[mm] -2y2xdz+2z2xdy-(-2y2ydx\wedge [/mm] dz+2z2ydx)

wegen -2y2ydx [mm] \wedge [/mm] dz wäre das aber keine 1-Form. Ob die letzten beiden Zeilen richtig sind weiß ich leider nicht. Vielleicht kann mir jmd auf die Sprünge helfen?

Grüße, kulli

        
Bezug
Orientierung Differentialform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:00 Di 22.01.2013
Autor: kullinarisch

Tut mir leid, ich wollte nur was korrigieren, jetzt hab ich den Artikel versehentlich 3 mal hochgeladen. [mm] \to [/mm] ab ins Bett

Bezug
                
Bezug
Orientierung Differentialform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:16 Di 22.01.2013
Autor: Al-Chwarizmi


> Tut mir leid, ich wollte nur was korrigieren, jetzt hab ich
> den Artikel versehentlich 3 mal hochgeladen. [mm]\to[/mm] ab ins
> Bett


... ja , das ist dann wohl eine gute Idee !      [gutenacht]

.                                                  Al


Bezug
        
Bezug
Orientierung Differentialform: Weiter in Thread 1 :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:46 Di 22.01.2013
Autor: Diophant

Hallo,

ich habe mal die zweite und die dritte Frage als 'nur für Interessierte' markiert. Somit geht es in deiner ersten Frage weiter.


Gruß, Diophant  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]