Operatoren, Operatornorm < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ist S [mm] \in [/mm] L(Y,Z) und T [mm] \in [/mm] L(X,Y), so ist S [mm] \circ [/mm] T [mm] \in [/mm] L(X,Z) und es gilt [mm] \parallel [/mm] S [mm] \circ [/mm] T [mm] \parallel \le \parallel [/mm] S [mm] \parallel \parallel [/mm] T [mm] \parallel. [/mm] |
Also: L(X,Y) ist der Raum der stetigen, linearen Funktionen die von X nach Y abbilden.
Dass gilt: S [mm] \circ [/mm] T [mm] \in [/mm] L(X,Z) habe ich schon gezeigt, das war ganz leicht. Stetigkeit folgt aus der Stetigkeit von T und S, die Linearität bekommt man durch ein bisschen umformen und durch die Voraussetzungen, dass T und S linear sind und dass S [mm] \circ [/mm] T [mm] \in [/mm] L(X,Z) von X nach Z abbildet ist auch leicht zu zeigen.
Aber wie geht der zweite Aufgabenteil?
Es ist mir schon klar, dass das gelten muss, aber wie beweise ich das?
[mm] \parallel [/mm] * [mm] \parallel [/mm] bezeichnet die Operatornorm, die wie folgt definiert ist:
[mm] \parallel [/mm] A [mm] \parallel [/mm] (Operatornorm) = sup [mm] \parallel [/mm] A [mm] \parallel [/mm] bzgl der Norm des Raumes, in den A abbildet., wobei [mm] \parallel [/mm] A [mm] \parallel [/mm] bzgl dieser Norm immer [mm] \le [/mm] 1 ist.
Also ich habe
[mm] \parallel [/mm] S [mm] \circ [/mm] T [mm] \parallel \le \parallel [/mm] S [mm] \parallel \parallel [/mm] T [mm] \parallel.
[/mm]
wobei [mm] \parallel [/mm] S [mm] \circ [/mm] T [mm] \parallel \le [/mm] 1
[mm] \parallel [/mm] S [mm] \parallel \le [/mm] 1
[mm] \parallel [/mm] T [mm] \parallel \le [/mm] 1
Hat jemand eine Idee?
Das wäre ganz super!
Viele Grüße
broergoer
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Ist S [mm]\in[/mm] L(Y,Z) und T [mm]\in[/mm] L(X,Y), so ist S [mm]\circ[/mm] T [mm]\in[/mm]
> L(X,Z) und es gilt [mm]\parallel[/mm] S [mm]\circ[/mm] T [mm]\parallel \le \parallel[/mm]
> S [mm]\parallel \parallel[/mm] T [mm]\parallel.[/mm]
> Also: L(X,Y) ist der Raum der stetigen, linearen
> Funktionen die von X nach Y abbilden.
> Dass gilt: S [mm]\circ[/mm] T [mm]\in[/mm] L(X,Z) habe ich schon gezeigt,
> das war ganz leicht. Stetigkeit folgt aus der Stetigkeit
> von T und S, die Linearität bekommt man durch ein bisschen
> umformen und durch die Voraussetzungen, dass T und S linear
> sind und dass S [mm]\circ[/mm] T [mm]\in[/mm] L(X,Z) von X nach Z abbildet
> ist auch leicht zu zeigen.
>
> Aber wie geht der zweite Aufgabenteil?
> Es ist mir schon klar, dass das gelten muss, aber wie
> beweise ich das?
>
> [mm]\parallel[/mm] * [mm]\parallel[/mm] bezeichnet die Operatornorm, die wie
> folgt definiert ist:
> [mm]\parallel[/mm] A [mm]\parallel[/mm] (Operatornorm) = sup [mm]\parallel[/mm] A
> [mm]\parallel[/mm] bzgl der Norm des Raumes, in den A abbildet.,
> wobei [mm]\parallel[/mm] A [mm]\parallel[/mm] bzgl dieser Norm immer [mm]\le[/mm] 1
> ist.
> Also ich habe
>
> [mm]\parallel[/mm] S [mm]\circ[/mm] T [mm]\parallel \le \parallel[/mm] S [mm]\parallel \parallel[/mm]
> T [mm]\parallel.[/mm]
>
> wobei [mm]\parallel[/mm] S [mm]\circ[/mm] T [mm]\parallel \le[/mm] 1
> [mm]\parallel[/mm] S [mm]\parallel \le[/mm] 1
> [mm]\parallel[/mm] T [mm]\parallel \le[/mm] 1
>
> Hat jemand eine Idee?
> Das wäre ganz super!
Mir kommt Deine Beschreibung der Operatornorm reichlich konfus vor. - Wie auch immer: gilt für Deine Operatornorm nicht so etwas wie [mm] $\parallel S(y)\parallel \leq \parallel S\parallel \;\parallel y\parallel$ [/mm] bzw. [mm] $\parallel T(x)\parallel \leq \parallel T\parallel\; \parallel x\parallel$? [/mm] Wenn ja, dann folgt
[mm]\parallel (S\circ T)(x)\parallel \quad\leq \quad\parallel S\parallel \; \parallel T(x)\parallel \quad\leq\quad \parallel S\parallel \; \parallel T\parallel\; \parallel x\parallel[/mm]
Daraus sollte sich doch für den gesuchten Beweis etwas machen lassen...
|
|
|
|