www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Null als Eigenwert von Matrix
Null als Eigenwert von Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Null als Eigenwert von Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Do 19.09.2013
Autor: acid

Hallo,

wir haben in der Vorlesung begründet, dass die Eigenvektoren zu verschiedenen Eigenwerten immer linear unabhängig sind. Das bedeutet doch, dass eine $n [mm] \times [/mm] n$-Matrix mit n verschiedenen Eigenwerten diagonalisierbar ist, weil es n linear unabhängige Eigenvektoren gibt.

Trotzdem habe ich gehört, dass man daraus, dass eine Matrix 0 als Eigenwert hat folgern kann, dass sie nicht diagonalisierbar ist. Stimmt das - also bedeutet ein Eigenwert von null, dass es keine n lin. unabhängigen Eigenvektoren gibt? Und wie kann man das begründen?

Vielen Dank und viele Grüße
acid

        
Bezug
Null als Eigenwert von Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Do 19.09.2013
Autor: fred97


> Hallo,
>  
> wir haben in der Vorlesung begründet, dass die
> Eigenvektoren zu verschiedenen Eigenwerten immer linear
> unabhängig sind. Das bedeutet doch, dass eine [mm]n \times n[/mm]-Matrix
> mit n verschiedenen Eigenwerten diagonalisierbar ist, weil
> es n linear unabhängige Eigenvektoren gibt.

Das stimmt.


>  
> Trotzdem habe ich gehört, dass man daraus, dass eine
> Matrix 0 als Eigenwert hat folgern kann, dass sie nicht
> diagonalisierbar ist.



Das stimmt nicht.

Jede Diagonalmatrix ist diagonalisierbar. Also auch solche Diagonalmatrizen, die auf der Hauptdiagonalen eine Null haben.

Einfachstes Beispiel: die Nullmatrix ist diagonalisierbar.

FRED




> Stimmt das - also bedeutet ein
> Eigenwert von null, dass es keine n lin. unabhängigen
> Eigenvektoren gibt? Und wie kann man das begründen?
>  
> Vielen Dank und viele Grüße
>  acid


Bezug
        
Bezug
Null als Eigenwert von Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Do 19.09.2013
Autor: angela.h.b.


> Trotzdem habe ich gehört, dass man daraus, dass eine
> Matrix 0 als Eigenwert hat folgern kann, dass sie nicht
> diagonalisierbar ist.

Hallo,

ich glaube, Du hast Dich verhört.
Richtig ist: wenn die Matrix den EW 0 hat, ist sie nicht invertierbar.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]