Notw. Bedingung für Extrema < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:13 Mi 03.09.2008 | Autor: | cares87 |
Aufgabe | Ist x [mm] \in [/mm] ]a,b[ lokales Extremum der Fkt f:]a,b[ [mm] \to \IR [/mm] und ist f diffbar in x, dann gilt f'(x) = 0. |
Hallo,
ich versuche den Beweis nachzuvollziehen, habe aber eine Frage:
Wir haben das ganze OBdA für Maxima bewiesen, d.h es ja, beim lokalen Maximum gibt es ein [mm] \epsilon [/mm] für das gilt f(x) [mm] \ge [/mm] f(y) [mm] \forall [/mm] |x-y|< [mm] \epsilon.
[/mm]
f diffbar: f'(x) = [mm] \lim_{y \rightarrow x} \bruch{f(y)-f(x)}{y-x} [/mm] = [mm] \lim_{y \rightarrow x (von links)} \bruch{f(y)-f(x)}{y-x} [/mm] = [mm] \lim_{y \rightarrow x (von rechts)} \bruch{f(y)-f(x)}{y-x} [/mm] = 0
So, wir haben uns überlegt, dass beim Limes von links ja Zähler und Nenner [mm] \le [/mm] 0 sein müssen und beim Limes von Rechts beide [mm] \ge [/mm] 0 sind. Aber warum ist denn hier [mm] f(y)-f(x)\ge [/mm] 0? Wir haben doch in f(x) ein Maximum also müsste doch auch wenn ich von links komme noch f(y) kleiner als x sein und damit wäre der Term negativ, damit wäre auch der ganze Bruch negativ und dann könnte ich nicht so schön schlussfolgern, dass also nur die 0 möglich ist als Ergebnis. Oder habe ich einfach nur irgendwas falsch aufgeschrieben?
Danke und schöne Grüße,
Caro
|
|
|
|
> Ist x [mm]\in[/mm] ]a,b[ lokales Extremum der Fkt f:]a,b[ [mm]\to \IR[/mm]
> und ist f diffbar in x, dann gilt f'(x) = 0.
> Hallo,
>
> ich versuche den Beweis nachzuvollziehen, habe aber eine
> Frage:
> Wir haben das ganze OBdA für Maxima bewiesen, d.h es ja,
> beim lokalen Maximum gibt es ein [mm]\epsilon[/mm] für das gilt f(x)
> [mm]\ge[/mm] f(y) [mm]\forall[/mm] |x-y|< [mm]\epsilon.[/mm]
> f diffbar: f'(x) = [mm]\lim_{y \rightarrow x} \bruch{f(y)-f(x)}{y-x}[/mm]
> = [mm]\lim_{y \rightarrow x (von links)} \bruch{f(y)-f(x)}{y-x}[/mm]
> = [mm]\lim_{y \rightarrow x (von rechts)} \bruch{f(y)-f(x)}{y-x}[/mm]
> = 0
Hallo,
wenn ich mich dem Maximum (bei x) von links nähere, ist y-x<0 und [mm] f(y)-f(x)\le [/mm] 0, der Bruch also positiv (oder Null).
Wenn ich mich dem Maximum von rechts nähere, ist y-x>0 und [mm] f(y)-f(x)\le [/mm] 0, der Bruch also negativ (oder Null).
Wenn ich das jetzt mit dem vergleiche, was Du schreibst, komme ich zu dem Schluß, daß Du etwas falsch aufgeschreiben und den Fehler selbst bemerkt hast.
Gruß v. Angela
> So, wir haben uns überlegt, dass beim Limes von links ja
> Zähler und Nenner [mm]\le[/mm] 0 sein müssen und beim Limes von
> Rechts beide [mm]\ge[/mm] 0 sind. Aber warum ist denn hier
> [mm]f(y)-f(x)\ge[/mm] 0? Wir haben doch in f(x) ein Maximum also
> müsste doch auch wenn ich von links komme noch f(y) kleiner
> als x sein und damit wäre der Term negativ, damit wäre auch
> der ganze Bruch negativ und dann könnte ich nicht so schön
> schlussfolgern, dass also nur die 0 möglich ist als
> Ergebnis. Oder habe ich einfach nur irgendwas falsch
> aufgeschrieben?
> Danke und schöne Grüße,
> Caro
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Mi 03.09.2008 | Autor: | cares87 |
ok, danke schön
|
|
|
|