www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Nilpotente Matrizen
Nilpotente Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotente Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Mi 28.05.2008
Autor: Zweiti

Aufgabe
Zeigen Sie, dass die folgenden Aussagen für eine Matrix A [mm] \in [/mm] Mat (n x n; K) äquivalent sind:
(1) A ist nilpotent
(2) Es ex. ein C [mm] \in Gl_{n}(K), [/mm] sodass [mm] C^{-1}AC [/mm] eine obere Dreiecksmatrix mit Nullen auf der Diagonalen ist.

Hinweis : Zeigen Sie, dass es ein [mm] D\in Gl_{n}(K) [/mm] gibt, sodass
[mm] D^{-1}AD= \pmat{ 0 |& & \* & \\ -|& - & - &- \\ 0 |& & & \\ \vdots |& & B & \\0 |& & & } [/mm]
und B [mm] \in [/mm] Mat ((n-1) x (n-1); K) nilpotente Matrix ist.

Hallo,
also ich weiß dass eine Matrix nilpotent ist, wenn [mm] A^{k}=0 [/mm] ist, aber wie ich das hier in dem Zusammenhang verwenden soll, weiß ich nicht.

Ich wäre für jeden Ansatz dankbar.

Zweiti

ICh hab diese Frage in keinem anderen Forum gestellt

        
Bezug
Nilpotente Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Mi 28.05.2008
Autor: angela.h.b.


> Zeigen Sie, dass die folgenden Aussagen für eine Matrix A
> [mm]\in[/mm] Mat (n x n; K) äquivalent sind:
>  (1) A ist nilpotent
>  (2) Es ex. ein C [mm]\in Gl_{n}(K),[/mm] sodass [mm]C^{-1}AC[/mm] eine obere
> Dreiecksmatrix mit Nullen auf der Diagonalen ist.
>  
> Hinweis : Zeigen Sie, dass es ein [mm]D\in Gl_{n}(K)[/mm] gibt,
> sodass
>  [mm]D^{-1}AD= \pmat{ 0 |& & \* & \\ -|& - & - &- \\ 0 |& & & \\ \vdots |& & B & \\0 |& & & }[/mm]
> und B [mm]\in[/mm] Mat ((n-1) x (n-1); K) nilpotente Matrix ist.
>  Hallo,
>  also ich weiß dass eine Matrix nilpotent ist, wenn [mm]A^{k}=0[/mm]
> ist, aber wie ich das hier in dem Zusammenhang verwenden
> soll, weiß ich nicht.
>
> Ich wäre für jeden Ansatz dankbar.

Hallo,

Du solltest wissen oder Dir überlegen, daß nilpotente nxn-Matrizen den n-fachen Eigenwert 0 haben.

Also haben sie einen Eigenvektor [mm] v_0, [/mm] welchen Du zu einer Basis B des [mm] K^n [/mm] ergänzen kannst.

Wenn D die Matrix ist, die Dir die Transformation von von B zur Standardbasis durchführt, so bekommst Du das als Hinweis gegebene Resultat.

Für [mm] A^k=0 [/mm] berechne nun [mm] (D^{-1}AD)^k [/mm]  unter Berücksichtugung der Tatsache, daß Du hier Blockmatizen multiplizierst.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]