www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Nilpotente Matrix
Nilpotente Matrix < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotente Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Di 02.06.2015
Autor: zahlenfreund

Aufgabe
Sei A ∈ [mm] M_{n×n}(K) A=\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \dots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} [/mm]
(Unter der Diagonale 0, soll eine Diagonale mit 1 stehen). zu zeigen ist das A nilpotent ist. [mm] A^{n}=0 [/mm]

Moin,

Ich will das ganze mit Induktion beweisen. Mir ist aufgefallen das mit wachsenden Exponent [mm] A^{2}, A^{3} [/mm] die Eins-Diagonale nach "unten links rückt".
Induktionsanfang: Für n=1 und n=2 ist es klar.
Induktionsschritt (n-1)->n hier komme ich nicht weiter.

mfg zahlenfreund


        
Bezug
Nilpotente Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Di 02.06.2015
Autor: fred97


> Sei A ∈ [mm]M_{n×n}(K) A=\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \dots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}[/mm]
>  
> (Unter der Diagonale 0, soll eine Diagonale mit 1 stehen).
> zu zeigen ist das A nilpotent ist. [mm]A^{n}=0[/mm]
>  Moin,
>  
> Ich will das ganze mit Induktion beweisen. Mir ist
> aufgefallen das mit wachsenden Exponent [mm]A^{2}, A^{3}[/mm] die
> Eins-Diagonale nach "unten links rückt".
>  Induktionsanfang: Für n=1 und n=2 ist es klar.
> Induktionsschritt (n-1)->n hier komme ich nicht weiter.
>
> mfg zahlenfreund
>  


Ich wuerde ddas charakteristische polynom von A berechnen, das ist hier ganz einfach!

Dann ist zu empfehlen, Cayley- Hamilton zu bemuehen.

Fred


Bezug
                
Bezug
Nilpotente Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Di 02.06.2015
Autor: zahlenfreund

Hallo Fred ,

Den Satz von cayley hatten wir in der Vorlesung noch nicht.


Bezug
                        
Bezug
Nilpotente Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Di 02.06.2015
Autor: hippias

Dann versuche eben etwas anderes. Du koenntest Deine Beobachtung zu den Potenzen der Matrix, dass die $1$en in [mm] $M^{k}$ [/mm] um $k$ Stellen nach links verschoben sind, mittels Induktion beweisen. Dann folgt automatisch, dass [mm] $M^{n}=0$ [/mm] ist.
Dafuer koennte es nuetzlich sein, ersteinmal $AM$ fuer eine beliebige [mm] $n\times [/mm] n$ Matrix $A$ zu betrachten.

Bezug
                                
Bezug
Nilpotente Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Di 02.06.2015
Autor: hippias

Oder untersuche, was $M$ mit den Standardbasisvektoren macht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]