www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Nilpotente Matrix
Nilpotente Matrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotente Matrix: Dimension, Unterraum
Status: (Frage) beantwortet Status 
Datum: 22:44 Sa 05.07.2014
Autor: YuSul

Aufgabe
Sei V ein n-dimensionaler K-Vektorraum und sei [mm] $\phi\in [/mm] End(V)$ nilpotent mit Nilpotenzgrad d. Zeigen Sie, dass gilt [mm] $d\leq [/mm] n$

Hi,

ich habe eine Frage zu der Lösung dieser Aufgabe.

Es gilt:

[mm] $\phi(v)^{d-1}\neq [/mm] 0$. Nach einem Satz aus der Vorlesung sind also die Vektoren:

$v, [mm] \phi(v), [/mm] ..., [mm] \phi^{d-1}(v)$ [/mm] linear unabhängig, und der davon erzeugte Vektorraum ein Untervektorraum von V und [mm] $\phi$-Invariant. [/mm]

[mm] $U:=\langle\{v, \phi(v), ..., \phi^{d-1}(v)\}$ [/mm]

Nun gilt

[mm] $dim(U)\leq [/mm] dim(V)$

Meine Frage ist, warum dies nun als Beweis ausreicht?
Liegt es daran, dass [mm] $U\quad \phi$-Invariant [/mm] ist?

        
Bezug
Nilpotente Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 So 06.07.2014
Autor: hippias

Nein, die [mm] $\phi$-Invarianz [/mm] von $U$ ist fuer die Behauptung nicht entscheidend, sondern die Dimensionen der beteiligten Raeume.

Bezug
                
Bezug
Nilpotente Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 So 06.07.2014
Autor: YuSul

Und in wie fern liefert die Dimension der Räume hier eine Begründung, dass der Nilpotenzgrad kleiner als n sein muss?
Das leuchtet mir gerade nicht so sehr ein.

Bezug
                        
Bezug
Nilpotente Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 So 06.07.2014
Autor: Berieux

In V können höchstens n Vektoren linear unabhängig sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]