www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - Nichtlineare Optimierung
Nichtlineare Optimierung < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nichtlineare Optimierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Di 07.10.2014
Autor: november

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich beschäftige mich gerade mit nichtlinearer Optimierung und genauer mit Problemen mit Gleichungrestriktionen. Dabei ist mir aufgefallen, dass da keine Hinreichende Optimalitätsbedingung 1. Ordnung definiert wird.
Warum nicht oder ist das schon in der notwendigen Optimalitätsbedindung 1.Ordnung impliziert?

Danke für Eure Hilfe

        
Bezug
Nichtlineare Optimierung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Di 07.10.2014
Autor: DieAcht

Hallo november und [willkommenmr]!


Wow, seit 2007 Mitglied und noch keine Frage gestellt.


> Ich beschäftige mich gerade mit nichtlinearer Optimierung
> und genauer mit Problemen mit Gleichungrestriktionen. Dabei
> ist mir aufgefallen, dass da keine Hinreichende
> Optimalitätsbedingung 1. Ordnung definiert wird.

Was heißt definiert? Es geht doch hier um mögliche Sätze! Aber du
hast Recht: Es gibt im Allgemeinen keinen hinreichenden Satz be-
züglich der Optimalitätsbedingung erster Ordnung.

> Warum nicht

Weil nicht jeder stationäre Punkt eine lokale Lösung ist.

Man kann aber folgendes zeigen:

Ist $f$ konvex, dann ist jeder stationäre Punkt [mm] $x\$ [/mm] globale Lösung
von PLG und wir haben nicht nur eine notwendige sondern auch
eine hinreichende Optimalitätsbedingung.

> oder ist das schon in der notwendigen Optimalitätsbedindung 1.Ordnung impliziert?

Nein, natürlich gibt es Gegenbeispiele.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]