www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Newtonverfahren
Newtonverfahren < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newtonverfahren: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:02 Do 06.12.2012
Autor: Onkel-Di

Aufgabe
Gesucht ist eine Approximation für [mm] \wurzel[5]{34} [/mm] , die mit Hilfe des Newtonverfahrens gefunden werden soll.

a) Wählen Sie eine geeignete Funktion, deren Nullstelle [mm] \wurzel[5]{34} [/mm] ist.

b) Stellen Sie die Rekursionsformel nach Newton für diese Funktion auf.

c) Geben Sie mit dem Startwert [mm] x_{0}=2 [/mm] die ersten 2 Iterationsschritte (auf 7 Stellen nach dem Komma gerundet) an.

Hallo Mathefreunde,

habe mich an der obigen Frage versucht und möchte nun gerne wissen, ob ich korrekt vorgegangen bin.

Lösung zu a)

f(x)= [mm] x^{5}-34 [/mm]  

Dazu habe ich die Ableitung auch mal aufgeschrieben: [mm] f'(x)=5x^{4} [/mm]

Teil b)

Ich habe keine Ahnung, was die Rekursionsformel ist.... aber ich habe mir gedacht, das ist diejenige Gleichung, mit der ich die "Folgeglieder" auch berechne, ist das korrekt?

Daher: [mm] x_{n+1}=x_{n}-\bruch{x_{n}^{5}-34}{5x_{n}^{4}} [/mm]

Teil c)

Jetzt habe ich die ersten 2 "Folgeglieder" berechnet... das sind doch die Iterationsschritte? Oder liege ich hier falsch?

[mm] x_{1}=2-\bruch{2^{5}-34}{5*2^{4}} [/mm] = 2,0250

[mm] x_{2}=x_{1}-\bruch{f(x_{1}}{f'(x)_{1}}= [/mm] 2,0243978

Und habe dann die Lösungen 2,0250 und 2,0243978.

Vielen Dank für Eure Mühen das Ihr Euch damit befasst.

Gruß

Onkel-Di



        
Bezug
Newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Do 06.12.2012
Autor: fred97


> Gesucht ist eine Approximation für [mm]\wurzel[5]{34}[/mm] , die
> mit Hilfe des Newtonverfahrens gefunden werden soll.
>  
> a) Wählen Sie eine geeignete Funktion, deren Nullstelle
> [mm]\wurzel[5]{34}[/mm] ist.
>  
> b) Stellen Sie die Rekursionsformel nach Newton für diese
> Funktion auf.
>  
> c) Geben Sie mit dem Startwert [mm]x_{0}=2[/mm] die ersten 2
> Iterationsschritte (auf 7 Stellen nach dem Komma gerundet)
> an.
>  Hallo Mathefreunde,
>  
> habe mich an der obigen Frage versucht und möchte nun
> gerne wissen, ob ich korrekt vorgegangen bin.
>  
> Lösung zu a)
>  
> f(x)= [mm]x^{5}-34[/mm]  
>
> Dazu habe ich die Ableitung auch mal aufgeschrieben:
> [mm]f'(x)=5x^{4}[/mm]
>  
> Teil b)
>  
> Ich habe keine Ahnung, was die Rekursionsformel ist....
> aber ich habe mir gedacht, das ist diejenige Gleichung, mit
> der ich die "Folgeglieder" auch berechne, ist das korrekt?

Ja


>  
> Daher: [mm]x_{n+1}=x_{n}-\bruch{x_{n}^{5}-34}{5x_{n}^{4}}[/mm]
>  
> Teil c)
>  
> Jetzt habe ich die ersten 2 "Folgeglieder" berechnet... das
> sind doch die Iterationsschritte? Oder liege ich hier
> falsch?
>  
> [mm]x_{1}=2-\bruch{2^{5}-34}{5*2^{4}}[/mm] = 2,0250
>  
> [mm]x_{2}=x_{1}-\bruch{f(x_{1}}{f'(x)_{1}}=[/mm] 2,0243978

nachgerechnet hab ich das nicht. Sieht aber gut aus

FRED


>  
> Und habe dann die Lösungen 2,0250 und 2,0243978.
>  
> Vielen Dank für Eure Mühen das Ihr Euch damit befasst.
>  
> Gruß
>  
> Onkel-Di
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]