www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Näherungsparabel Taylerform
Näherungsparabel Taylerform < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Näherungsparabel Taylerform: Vorzeichenfehler?
Status: (Frage) beantwortet Status 
Datum: 15:17 Do 05.06.2008
Autor: brichun

Aufgabe
[mm]f(x)=\wurzel[3]{1-x^2}[/mm]

Näherungsparabel zweiter Ordung mit Hilfe von Taylerformel am
Entwicklungspunkt xo=0
Die Talerformel: [mm]f(x)=f(Xo)+f^1(Xo)(X-Xo)+\bruch{f^2(Xo)}{2!}*(X-Xo)^2[/mm]

Ableitungen:

[mm]f^1(x)=\bruch{2x}{3\wurzel[3]{(1-x^2)^2}}[/mm]
[mm]f^2(x)=\bruch{8x^2}{9\wurzel[3]{(1-x^2)^5}}+\bruch{2}{3\wurzel[3]{(1-x^2)^2}}[/mm]

Die Ableitungen müssen Richtig sein hab sie mit einem Matheprogramm überprüft.

für die Taylerform hab ich folgendes raus:

[mm]f(x)=1+\bruch{1}{3}*x^2}[/mm]

in der Lösung bei mir steht da anstelle von dem + ein - .

Ich hab die beiden Funktionen mal in einen Grafikrechner eingegeben.
Die [mm]f(x)=\wurzel[3]{1-x^2}[/mm] ähnelt  im bereich -1 bis 1 einer Parabel die nach unten geöffnet ist.
Wenn ich keinen Vorzeichendreher hatte woher weiss ich ob die Näherungsparabel positiv oder negativ sein soll??



        
Bezug
Näherungsparabel Taylerform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Do 05.06.2008
Autor: Al-Chwarizmi


> [mm]f(x)=\wurzel[3]{1-x^2}[/mm]
>  
> Näherungsparabel zweiter Ordung mit Hilfe von Taylerformel

             Taylor !

> am
>  Entwicklungspunkt xo=0
>  Die Taylorformel:
> [mm]f(x)=f(Xo)+f^1(Xo)(X-Xo)+\bruch{f^2(Xo)}{2!}*(X-Xo)^2[/mm]
>  Ableitungen:
>  
> [mm]f^1(x)=\bruch{2x}{3\wurzel[3]{(1-x^2)^2}}[/mm]     [notok]
>  
> [mm]f^2(x)=\bruch{8x^2}{9\wurzel[3]{(1-x^2)^5}}+\bruch{2}{3\wurzel[3]{(1-x^2)^2}}[/mm]       [notok]

  

> Die Ableitungen müssen Richtig sein hab sie mit einem
> Matheprogramm überprüft.

das sind sie leider nicht -  in  [mm] f^1(x) [/mm] ist dein vermuteter Vorzeichenfehler,
der sich auch in [mm] f^2(x) [/mm]  fortgepflanzt hat.

>  
> für die Taylorform hab ich folgendes raus:
>  
> [mm]f(x)=1+\bruch{1}{6}*x^2}[/mm]           [notok]

... ich erhalte:      [mm]f(x)=1-\bruch{1}{3}*x^2}[/mm]

    (möglicherweise hast du den Nenner  2!  übersehen)
  

> in der Lösung bei mir steht da anstelle von dem + ein - .
>  
> Ich hab die beiden Funktionen mal in einen Grafikrechner
> eingegeben.
>  Die [mm]f(x)=\wurzel[3]{1-x^2}[/mm] ähnelt  im bereich -1 bis 1
> einer Parabel die nach unten geöffnet ist.
>  Wenn ich keinen Vorzeichendreher hatte woher weiss ich ob
> die Näherungsparabel positiv oder negativ sein soll??


Die Näherungsparabel müsste (wenigstens in einer kleinen
Umgebung von 0 ) gleich gekrümmt sein wie die Originalfunktion.


LG

Bezug
                
Bezug
Näherungsparabel Taylerform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Do 05.06.2008
Autor: brichun

Danke ......

jetzt hab ichs auch gefunden das Nachdifferenzieren von -2x , da hab ich das Vorzeichen übersehen.

und jetzt stimmt auch das Ergebnis :)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]