Mengenregeln < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:27 Do 19.05.2011 | Autor: | Mike_One |
Aufgabe | Gegeben seien drei Teilmengen A, B, C einer Grundmenge G.
Vereinfachen sie den folgenden Ausdruck:
[mm] (A\cap B\cap C)\cup (\overline{\overline{A}\cup\overline{B} \cup C})\cup (A\cap\overline{B} \cap [/mm] C) |
Die Umrechnung der Komplemente ist nicht das Problem, auch die Anwendung von Gesetzten sind eigentlich kein Problem, doch komm ich trotzdem nicht weiter.
Ab hier hänge ich:( A [mm] \cap [/mm] B [mm] \cap [/mm] C) [mm] \cup [/mm] (A [mm] \cap [/mm] B \ C) [mm] \cup [/mm] (A [mm] \cap [/mm] C \ B)
Auch wenn ich eine Regelmässigleit erkenne komme ich nicht auf die vereinfachung.
Stelle ich diese Mengen Graphisch dar, und schreibe sie dann um komme ich auf folgende Lösung:
A [mm] \cap [/mm] ( B [mm] \cup [/mm] C )
Doch wie rechnerisch? Vielen Dank.
"Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt."
|
|
|
|
Nun, um das rechnerisch hinzukriegen muss man ein wenig tricksen...
Zu aller erst würde ich dir raten wieder nicht-C zu schreiben statt \ C (dann ist schöner zu sehen was du machen musst).
Dann musst du im Endeffekt nur ein paar mal diese beiden Regeln für Mengen benutzen:
Für alle Mengen M gilt: $M [mm] \cup [/mm] M = M$
Für alle Mengen A,B gilt ("ausklammern"):$(A [mm] \cap [/mm] B) [mm] \cup [/mm] (A [mm] \cap [/mm] C) =A [mm] \cap [/mm] (B [mm] \cup [/mm] C)$
Wenn du das über deinen Term rüberjagst und noch bedenkst, dass A,B,C Teilmengen der selben Obermenge G sind kommst du sehr bald bei deiner grafisch ermittelten Form an (die übrigens richtig ist).
MfG
Schadowmaster
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:47 Fr 20.05.2011 | Autor: | Mike_One |
Vielen Dank für den Ansatz. Den Weg und die Lösung habe ich jetzt, bitte einmal zur Prüfung. Danke
( A [mm] \cap [/mm] B [mm] \cap [/mm] C) [mm] \cup [/mm] ( A [mm] \cap [/mm] B [mm] \cap \overline{C} [/mm] ) [mm] \cup [/mm] (A [mm] \cap [/mm] C [mm] \cap \overline{B} [/mm] )
A [mm] \cap [/mm] (( B [mm] \cap [/mm] C) [mm] \cup [/mm] (B [mm] \cap \overline{C} [/mm] ) [mm] \cup [/mm] (C [mm] \cap \overline{B} [/mm] )
A [mm] \cap [/mm] (B [mm] \cap [/mm] (C [mm] \cup \overline{C} [/mm] ) [mm] \cup [/mm] (C [mm] \cap \overline{B} [/mm] )
A [mm] \cap [/mm] ( B [mm] \cap [/mm] (M) [mm] \cup [/mm] (C [mm] \cap \overline{B} [/mm] )
A [mm] \cap [/mm] (M [mm] \cap [/mm] B [mm] \cup [/mm] (C [mm] \cap \overline{B}))
[/mm]
A [mm] \cap [/mm] (M [mm] \cap [/mm] (B [mm] \cup [/mm] C ) [mm] \cap [/mm] (B [mm] \cup \overline{B} [/mm] )
A [mm] \cap [/mm] (M [mm] \cap [/mm] ( B [mm] \cup [/mm] C ) [mm] \cap [/mm] M)
A [mm] \cap [/mm] (M [mm] \cap [/mm] M [mm] \cap [/mm] (B [mm] \cup [/mm] C )
A [mm] \cap [/mm] (B [mm] \cup [/mm] C)
|
|
|
|
|
Hallo Mike_One,
> Vielen Dank für den Ansatz. Den Weg und die Lösung habe
> ich jetzt, bitte einmal zur Prüfung. Danke
>
> ( A [mm]\cap[/mm] B [mm]\cap[/mm] C) [mm]\cup[/mm] ( A [mm]\cap[/mm] B [mm]\cap \overline{C}[/mm] ) [mm]\cup[/mm] (A [mm]\cap[/mm] C [mm]\cap \overline{B}[/mm] )
> A [mm]\cap[/mm] (( B [mm]\cap[/mm] C) [mm]\cup[/mm] (B [mm]\cap \overline{C}[/mm] ) [mm]\cup[/mm] (C [mm]\cap \overline{B}[/mm] )[mm]\red{)}[/mm]
> A [mm]\cap[/mm] [mm]\red{(}[/mm](B [mm]\cap[/mm] (C [mm]\cup \overline{C}[/mm] )[mm]\red{)}[/mm] [mm]\cup[/mm] (C [mm]\cap \overline{B}[/mm])[mm]\red{)}[/mm]
> A [mm]\cap[/mm] [mm]\red{(}[/mm]( B [mm]\cap[/mm] (M)[mm]\red{)} \cup[/mm] (C [mm]\cap \overline{B}[/mm] )[mm]\red{)}[/mm]
> A [mm]\cap[/mm] [mm]\red{(}[/mm](M [mm]\cap[/mm] B[mm]\red{)}[/mm] [mm]\cup[/mm] (C [mm]\cap \overline{B}))[/mm]
Das [mm]M[/mm] kannst du hier und in der Folge direkt weglassen, wegen [mm]B\subset M[/mm] ist ja [mm]B\cap M=B[/mm]
Der Rest der Rechnung stimmt auch, achte etwas auf die Klammern!
> A [mm]\cap[/mm] (M [mm]\cap[/mm] (B [mm]\cup[/mm] C ) [mm]\cap[/mm] (B [mm]\cup \overline{B}[/mm] )
> A [mm]\cap[/mm] (M [mm]\cap[/mm] ( B [mm]\cup[/mm] C ) [mm]\cap[/mm] M)
> A [mm]\cap[/mm] (M [mm]\cap[/mm] M [mm]\cap[/mm] (B [mm]\cup[/mm] C )
>
> A [mm]\cap[/mm] (B [mm]\cup[/mm] C)
Gruß
schachuzipus
|
|
|
|