Mengenlogik < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:11 Mo 03.11.2008 | Autor: | L1NK |
Aufgabe | Sind die Aussagen wahr oder falsch. Wenn ja, dann begründe deine Aussage.
Potenzmenge kürze ich mi P ab.
1. Die Menge P(leere Menge) hat genau ein Element.
2. Die Menge P({leere Menge}) hat genau ein Element.
3. Es gilt: P(P(leere Menge)) ist Teilmenge von P({leere Menge})
4. Es gilt: P({leere Menge}) ist Teilmenge von P(P(leere Menge)). |
Hi, hab mal vorweg ne Frage.
Kann eine Potenzmenge zweimal die leere Menge enthalen, oder wird das als ein Element gezählt...?? (in Bezug auf 2.)
Also zu eins würde ich ja sagen.
Zu zwei würde auch ja sagen...
Zu drei und vier hab ich keine Ahnung.
Ich hoffe ihr könnt mir weiterhelfen.
Gruss LINK
P.S.: Die Klammern sind zu beachten, ob runde oder Schleifenklammer. Nicht denken ich habe mich vertan...^^
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:31 Mo 03.11.2008 | Autor: | Maik314 |
Hallo!
Als Leere Menge nehm ich mal das gebräuchliche Symbol [mm] \emptyset [/mm] .
Diese enthält keine Elemente, die Menge { [mm] \emptyset [/mm] } jedoch eines, nämlich die leere Menge.
Aus der Teilmengendefinition A [mm] \subseteq [/mm] B : [mm] \gdw \forall [/mm] x:(x [mm] \in [/mm] A [mm] \to [/mm] x [mm] \in [/mm] B)
für beliebige Mengen A und B (A ist genau dann TM von B, wenn jedes Element in A auch Element in B ist) folgt unmittelbar [mm] \emptyset \subseteq \emptyset [/mm] , sowie allgemein für beliebige Mengen M: M [mm] \subseteq [/mm] M und [mm] \emptyset \subseteq [/mm] M, einfach aufgrund der Logik des Konditionals [mm] \to.
[/mm]
Da nun die Potenzmenge P(M) einer Menge M als Menge aller Teilmengen dieser Menge definiert wird und die leere Menge Teilmenge ihrerselbst ist, aber keine weiteren Teilmengen haben kann, muss P( [mm] \emptyset [/mm] )= { [mm] \emptyset [/mm] } sein.
Teilmengen von { [mm] \emptyset [/mm] } sind laut obiger Feststellung { [mm] \emptyset [/mm] } und [mm] \emptyset, [/mm] also ist
P({ [mm] \emptyset [/mm] })={{ [mm] \emptyset [/mm] }; [mm] \emptyset [/mm] }=P(P( [mm] \emptyset [/mm] )).
|
|
|
|