Mengen und Sprachen < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:06 So 13.04.2008 | Autor: | vohigu |
Aufgabe | Sein im folgendem $ [mm] \summe [/mm] $ = {a,b}. Es wird die Menge L $ [mm] \subset \summe [/mm] $ Stern mit den folgenden Eigenschaften betrachtet.
-a $ [mm] \in [/mm] $ L
-Falls sich ein beliebiges Wort x in L befindet (x $ [mm] \in [/mm] $ L), so befinden sich auch die Worte
aax,abx,bax,bbx in L. (aax,abx,bax,bbx $ [mm] \in [/mm] $ L). Also : $ [mm] \forall [/mm] $ x $ [mm] \in [/mm] $ L $ [mm] \Rightarrow [/mm] $ aax,abx,bax,bbx $ [mm] \in [/mm] $ L
(a) geben Sie $ [mm] \summe1 \cap [/mm] $ L, $ [mm] \summe² \cap [/mm] $ L, $ [mm] \summe³ \cap [/mm] $ L, $ [mm] \summe4 \cap [/mm] $ L, $ [mm] \summe5 \cap [/mm] $ L an. |
Kann mir jemand diese Aufgabe Lösen damit ich sehe wie das funktioniert, ich hab schon viel rumgestöbert aber alles was ich gefunden habe hilft mir nicht. I ch weiss einfach nicht was wann in L ist.
Dank euch.
|
|
|
|
Hallo vohigu!
> Sein im folgendem [mm]\summe[/mm] = {a,b}. Es wird die Menge L
> [mm]\subset \summe[/mm] Stern mit den folgenden Eigenschaften
> betrachtet.
> -a [mm]\in[/mm] L
> -Falls sich ein beliebiges Wort x in L befindet (x [mm]\in[/mm] L),
> so befinden sich auch die Worte
> aax,abx,bax,bbx in L. (aax,abx,bax,bbx [mm]\in[/mm] L). Also :
> [mm]\forall[/mm] x [mm]\in[/mm] L [mm]\Rightarrow[/mm] aax,abx,bax,bbx [mm]\in[/mm] L
> (a) geben Sie [mm]\summe1 \cap[/mm] L, [mm]\summe² \cap[/mm] L, [mm]\summe³ \cap[/mm]
> L, [mm]\summe4 \cap[/mm] L, [mm]\summe5 \cap[/mm] L an.
> Kann mir jemand diese Aufgabe Lösen damit ich sehe wie das
> funktioniert, ich hab schon viel rumgestöbert aber alles
> was ich gefunden habe hilft mir nicht. I ch weiss einfach
> nicht was wann in L ist.
> Dank euch.
Also ich hoffe, ich habe hier jetzt nichts überlesen - irgendwie ist das Schriftbild recht seltsam. Und ist das die exakte Aufgabenstellung so?
Jedenfalls kannst du ja erstmal den Anfang von L aufschreiben, also a ist ja auf jeden Fall schon mal drin, und dann noch nach der weiteren Regel erstmal das hier: [mm] L=\{a,aaa,aba,baa,bba,...\}. [/mm] Und für die letzten vier Elemente kommen dann noch wieder alle vier Möglichkeiten nach der zweiten Regel von oben hinzu, also z.B. noch aaaaa, abaaa, baaaa, bbaaa für das Element aaa. Das kannst du ja für alle 5-elementigen Elemente noch aufschreiben, mehr brauchst du hier wohl nicht.
Dann kannst du auch mal [mm] \Sigma^1, \Sigma^2, \Sigma^3, \Sigma^4, \Sigma^5 [/mm] aufschreiben (und wenn du die "Hochtaste" neben der 1 auf der Tastatur benutzt, kann man es auch vernünftig lesen). Also z. B. ist ja [mm] \Sigma^1=\{a,b\}, [/mm] ergibt dann also [mm] $\Sigma^1\cap L=\{a\}$, [/mm] denn in [mm] \Sigma^1 [/mm] sind ja alle Elemente "einstellig", und in L ist a das einzige einstellige Element. Für [mm] \Sigma^2=\{aa,ab,ba,bb\} [/mm] erhältst du: [mm] $\Sigma^2\cap L=\emptyset$, [/mm] denn in L gibt es (sofern ich mich nicht vertan habe) kein "zweistelliges" Element, alle von mir noch nicht aufgezählten Elemente von L haben mindestens 5 Stellen.
Viele Grüße
Bastiane
|
|
|
|