www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Maximum, Minimum
Maximum, Minimum < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum, Minimum: Erklärung
Status: (Frage) beantwortet Status 
Datum: 18:17 Mi 08.06.2011
Autor: thesame

Aufgabe
berechne mögliche Extremstellen von: f(x)= [mm] e^{(x^3)-3x} [/mm] und entscheide auf Min- bzw. Maximum. Welches ist davon das absolute Maximum bzw. Minimum von f auf [-1;3]

Hallo erstmal alle zusammen.

Nun ja, ich habe die Ergebnisse raus, nämlich bei x=-1 ist ein Maximum vorhanden und bei x=1 ein Minimum. Nun ja zu meine Frage: Kann mir jemand erklären den unterschied zwischen lokalen Maximum sowie globalen Maximum?

        
Bezug
Maximum, Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Mi 08.06.2011
Autor: Gonozal_IX

Hiho,


> Nun ja, ich habe die Ergebnisse raus, nämlich bei x=-1 ist
> ein Maximum vorhanden und bei x=1 ein Minimum.

[ok]

> Nun ja zu meine Frage: Kann mir jemand erklären den unterschied
> zwischen lokalen Maximum sowie globalen Maximum?  

wie der Name schon sagt, ist ein lokales Minimum ein Minimum für einen (beliebig) kleinen Bereich des Definitionsbereichs, d.h. es gibt eine Umgebung um dieses Minimum, so dass dort alle Funktionswerte in dieser Umgebung größer sind.
Das globale Minimum einer Funktion ist das Minimum auf dem gesamten Definitionsbereich.

Nimm beispielsweise die Funktion: $f(x) = [mm] x^3 [/mm] + [mm] x^2$. [/mm]
Diese hat (genau) ein lokales Minimum bei $x=0$.
Dieses Minimum ist aber nicht global, da beispielsweise bei $f(-2) = -4 < 0$.

Eingeschränkt auf das Intervall [mm] $(-1,\infty)$ [/mm] wäre aber $x=0$ durchaus ein globales Minimum von f.

MFG,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]