www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Maximalwert bestimmen
Maximalwert bestimmen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximalwert bestimmen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:08 Mo 27.03.2006
Autor: jojo1484

Aufgabe
Für jedes t  [mm] \in \IR [/mm] * sind die Funktionen ft und pn gegeben durch

ft(x)=(x²+t)e^-tx²   mit x [mm] \in \IR [/mm]

pn(x)=x^2n - 1   mit x [mm] \in \IR [/mm]

Bestimmen Sie den maximalen Wert der Funktion d
mit d(x) = p2(x)-f-1(x)    für -1 [mm] \le [/mm] x [mm] \le [/mm] 1

Jetzt müsste ja d(x) folgende Funktion sein:

d(x)= [mm] (x^4 [/mm] - 1 - (x²-1)  [mm] \* e^x^2 [/mm]

Warum ist dann die Ableitung [mm] d'(x)=4x^3-(2x \* e^x² [/mm] +(x²-1) [mm] \* e^x² \* [/mm] 2x)      ??


Was bedeutet  -1 [mm] \le [/mm] x [mm] \le [/mm] 1

Und wie bekomm ich den maximalen Wert der Funktion d??

Hoffe um baldige Hilfe!!!

Danke bereits im Vorraus! jojo1484



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.





        
Bezug
Maximalwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Mo 27.03.2006
Autor: Fugre


> Für jedes t  [mm]\in \IR[/mm] * sind die Funktionen ft und pn
> gegeben durch
>  
> ft(x)=(x²+t)e^-tx²   mit x [mm]\in \IR[/mm]
>  
> pn(x)=x^2n - 1   mit x [mm]\in \IR[/mm]
>  
> Bestimmen Sie den maximalen Wert der Funktion d
>  mit d(x) = p2(x)-f-1(x)    für -1 [mm]\le[/mm] x [mm]\le[/mm] 1
>  Jetzt müsste ja d(x) folgende Funktion sein:
>  
> d(x)= [mm](x^4[/mm] - 1 - (x²-1)  [mm]\* e^x^2[/mm]
>  
> Warum ist dann die Ableitung [mm]d'(x)=4x^3-(2x \* e^x²[/mm] +(x²-1)
> [mm]\* e^x² \*[/mm] 2x)      ??
>  
>
> Was bedeutet  -1 [mm]\le[/mm] x [mm]\le[/mm] 1
>  
> Und wie bekomm ich den maximalen Wert der Funktion d??
>  
> Hoffe um baldige Hilfe!!!
>  
> Danke bereits im Vorraus! jojo1484
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
>
>  

Hallo Jojo,

um maximale oder minimale Funktionswerte zu finden, macht man zwei
Dinge: (1) Man sucht die Extrempunkte und (2) überprüft dann den
Randbereich um zu überprüfen, ob die vorher ermittelten Extrema relative
oder absolute Extrema sind.

Zur Ableitung:
Du willst [mm] $f(x)=x^4-1-(x^2-1)*e^{x^2}$ [/mm] ableiten, dann kannst du ja zuerst
[mm] $x^4-1$ [/mm] ableiten und erhältst [mm] $(x^4-1)'=4x^3$. [/mm] Den Rest kannst du dann mit
der Produktregel ableiten:
[mm] $f'(x)=(x^4-1)'-[(x^2-1)*e^{x^2}]'=(x^4-1)'-[(x^2-1)'*e^{x^2}+(x^2-1)*(e^{x^2})']$ [/mm]

Gruß
Nicolas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]