www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizen und Untergruppe
Matrizen und Untergruppe < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen und Untergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:03 Sa 04.07.2009
Autor: Unk

Aufgabe
[mm] $\mathcal{A}(n)$ [/mm] Menge der [mm] $(n+1)\times(n+1)-$Matrizen [/mm] der Form

[mm] $G_{A,a}=\begin{pmatrix}1 & 0\\ a & A\end{pmatrix},A\in GL(n,K),a\in K^{n}.$\\ [/mm]
Für [mm] $a\in K^{n},$ [/mm] setze [mm] $T_{a}=G_{En,a}.$\\ [/mm]
Für [mm] $A\in [/mm] GL(n,K),$ setze [mm] $\phi_{A}=G_{A,0}.$\\ [/mm]
Definiere: [mm] $\eta:\mathcal{A}(n)\rightarrow [/mm] GL(n,K)$ durch [mm] $\eta(G_{A,a})=A.$\\ [/mm]

Zeige:
(i) [mm] \mathcal(A)(n) [/mm] ist Untergruppe von GL(n+1,K)
(ii) [mm] \mathcal{T}(n)={T_a|a\in K^n} [/mm] und [mm] \mathcal{G}(n)={\phi_a|A\in GL(n,K)} [/mm] sind Untergruppen von [mm] \mathcal{A}(n) [/mm]
(iii) Man kann jedes Element aus [mm] \mathcal{A}(n) [/mm] schreiben als
[mm] g=T_a\phi_A [/mm]  und [mm] g=\phi_BT_b, [/mm] mit [mm] a,b\in K^n [/mm] und [mm] A,B\in [/mm] GL(n,K).
(iv) gilt [mm] T_a\phi_A=\phi_BT_b [/mm] mit a,b,A,B so definiert wie in (iii), so ist A=B.
(v) gilt (iv), so muss nicht a=b sein.

Hallo,

das sieht auf den ersten Blick viel aus, ist es aber eigtl nicht. Ich habe auch nur einige kleine Fragen dazu.

Zu (i): Die Untergruppeneigenschaft soll übrigens bzgl. der Matrizenmultiplikation gezeigt werden. Für die Abgeschlossenheit komme ich zu:
g,h [mm] \in \mathcal{A}(n), [/mm] dann: [mm] gh=\begin{pmatrix}1 & 0\\ a & A\end{pmatrix}\begin{pmatrix}1 & 0\\ b & B\end{pmatrix}=\begin{pmatrix}1 & 0 & ... & 0\\ a_{1}+\sum_{i=1}^{n}a_{1,i}b_{i}\\ \vdots & & AB\\ a_{n}+\sum_{i=1}^{n}a_{n,i}b_{i}\end{pmatrix}\in\mathcal{A}(n). [/mm]
Stimmt die Matrix am Ende?

Wie mache ich jetzt aber den Teil mit dem Inversen, also wie zeige  ich [mm] g\in \mathcal{A}(n)\Rightarrow g^{-1}\in \mathcal{A}(n). [/mm] Mein größtes Problem ist halt, dass ich nicht weiß, wie das Inverse genau aussieht, weil wenn ich 2 Matrizen multipliziere erhalte ich eben viele Summen in der ersten Spalte (siehe Abgeschlossenheit).

Der Rest ist hier klar.

Zu (ii). Ich nehme an [mm] g=G_{A,a} [/mm] und zeige dann, dass [mm] T_a\phi_A=G_{A,a}. [/mm] Das funktioniert ja noch super. Aber ich kann nicht annehmen, dass [mm] g=G_{B,b} [/mm] und dann berechnen [mm] \phi_BT_b, [/mm] denn dann erhalte ich wieder eine Matrix mit Summen in der ersten Spalte. Oder muss ich dann da nur sagen, dass die erste Spalte eben trotzdem wieder in [mm] K^n [/mm] liegt und damit das Produkt in [mm] \mathcal{A}(n) [/mm] und darf vorher die Annahme mit [mm] g=G_{B,b} [/mm] einfach nicht machen? Letztenendes kann ja auch in der ersten Spalte des Ergebnisses nicht der Vektor (1,b) stehen, denn dann würde (v) keinen Sinn machen.  Wie kann ich das dennoch korrekt formalisieren?

Wenn ich (ii) habe, kriege ich den Rest schnell hin, denke ich.

Gruß Unk



        
Bezug
Matrizen und Untergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:20 Sa 04.07.2009
Autor: felixf

Hallo Unk!

> [mm]\mathcal{A}(n)[/mm] Menge der [mm](n+1)\times(n+1)-[/mm]Matrizen der Form
>
> [mm]$G_{A,a}=\begin{pmatrix}1 & 0\\ a & A\end{pmatrix},A\in GL(n,K),a\in K^{n}.$\\[/mm]
>  
> Für [mm]a\in K^{n},[/mm] setze [mm]T_{a}=G_{En,a}.[/mm][mm] \\[/mm]
>  Für [mm]A\in GL(n,K),[/mm]
> setze [mm]\phi_{A}=G_{A,0}.[/mm][mm] \\[/mm]
>  Definiere:
> [mm]\eta:\mathcal{A}(n)\rightarrow GL(n,K)[/mm] durch
> [mm]\eta(G_{A,a})=A.[/mm][mm] \\[/mm]
>  
> Zeige:
>  (i) [mm]\mathcal(A)(n)[/mm] ist Untergruppe von GL(n+1,K)
>  (ii) [mm]\mathcal{T}(n)=\{T_a|a\in K^n\}[/mm] und
> [mm]\mathcal{G}(n)=\{\phi_a|A\in GL(n,K)\}[/mm] sind Untergruppen von
> [mm]\mathcal{A}(n)[/mm]
>  (iii) Man kann jedes Element aus [mm]\mathcal{A}(n)[/mm] schreiben
> als
>  [mm]g=T_a\phi_A[/mm]  und [mm]g=\phi_BT_b,[/mm] mit [mm]a,b\in K^n[/mm] und [mm]A,B\in[/mm]
> GL(n,K).
>  (iv) gilt [mm]T_a\phi_A=\phi_BT_b[/mm] mit a,b,A,B so definiert wie
> in (iii), so ist A=B.
>  (v) gilt (iv), so muss nicht a=b sein.
>
>  Hallo,
>  
> das sieht auf den ersten Blick viel aus, ist es aber eigtl
> nicht. Ich habe auch nur einige kleine Fragen dazu.
>  
> Zu (i): Die Untergruppeneigenschaft soll übrigens bzgl.
> der Matrizenmultiplikation gezeigt werden.

Ja, ansonsten ist $GL(n+1, k)$ auch keine Gruppe :)

> Für die
> Abgeschlossenheit komme ich zu:
>  g,h [mm]\in \mathcal{A}(n),[/mm] dann: [mm]gh=\begin{pmatrix}1 & 0\\ a & A\end{pmatrix}\begin{pmatrix}1 & 0\\ b & B\end{pmatrix}=\begin{pmatrix}1 & 0 & ... & 0\\ a_{1}+\sum_{i=1}^{n}a_{1,i}b_{i}\\ \vdots & & AB\\ a_{n}+\sum_{i=1}^{n}a_{n,i}b_{i}\end{pmatrix}\in\mathcal{A}(n).[/mm]
>  
> Stimmt die Matrix am Ende?

Ja, du kannst sie allerdings auch umschreiben: sie ist gerade [mm] $\begin{pmatrix} 1 & 0 \\ a + A b & A B \end{pmatrix}$. [/mm] Damit kannst du auch einfacher das Inverse bestimmen:

> Wie mache ich jetzt aber den Teil mit dem Inversen, also
> wie zeige  ich [mm]g\in \mathcal{A}(n)\Rightarrow g^{-1}\in \mathcal{A}(n).[/mm]
> Mein größtes Problem ist halt, dass ich nicht weiß, wie
> das Inverse genau aussieht, weil wenn ich 2 Matrizen
> multipliziere erhalte ich eben viele Summen in der ersten
> Spalte (siehe Abgeschlossenheit).

Es muss $A B = [mm] E_n$ [/mm] sein und $a + A b = 0$; dies ist der Fall, wenn $B = [mm] A^{-1}$ [/mm] ist und $b = [mm] -A^{-1} [/mm] a$.

> Der Rest ist hier klar.
>  
> Zu (ii). Ich nehme an [mm]g=G_{A,a}[/mm] und zeige dann, dass
> [mm]T_a\phi_A=G_{A,a}.[/mm] Das funktioniert ja noch super.

Genau. Das ist allerdings (iii) und nicht (ii) :)

> Aber ich
> kann nicht annehmen, dass [mm]g=G_{B,b}[/mm] und dann berechnen
> [mm]\phi_BT_b,[/mm] denn dann erhalte ich wieder eine Matrix mit
> Summen in der ersten Spalte.

Ja, da musst du auch etwas geschickter vorgehen. Verwende erstmal meine einfachere Matrix, um [mm] $\phi_B T_b$ [/mm] auszurechnen. Wie musst du jetzt $B$ und $b$ waehlen, damit [mm] $G_{A,a}$ [/mm] herauskommt?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]