www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizen in Restklassenkörper
Matrizen in Restklassenkörper < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen in Restklassenkörper: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:41 Di 22.01.2013
Autor: Franhu

Aufgabe
Fasse die Einträge der Matrix C als Elemente des Körpers [mm] \IF_{17} [/mm] (= [mm] \IZ [/mm] / 17 [mm] \IZ) [/mm] auf und berechne die Determinante.

C = [mm] \pmat{ 1 & 2 & 3 \\ 0 & 1 & 15 \\ 0 & 0 & 17 } [/mm]

Hallo Zusammen.

Ich bin mir nicht ganz sicher, aber diese Matrix im Körper [mm] \IF_{17} [/mm] ist doch einfach die folgende:

C' = [mm] \pmat{ 1 & 2 & 3 \\ 0 & 1 & 15 \\ 0 & 0 & 0 } [/mm]

und da dies eine Dreiecksmatrix ist kann ich einfach das Produkt der Elemente der Diagonalen berechnen und schon habe ich die Determinante.

det(C') = 0 ?

Gruss und Danke

Franhu

        
Bezug
Matrizen in Restklassenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Di 22.01.2013
Autor: angela.h.b.

Hallo,

richtig gemacht.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]