www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizen LGS nach X umstellen
Matrizen LGS nach X umstellen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen LGS nach X umstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Di 11.09.2012
Autor: dudu93

Hallo, ich habe eine Frage.

Wenn in der Aufgabe steht:

B X [mm] B^{-1} [/mm] = A

Dann folgt doch, wenn man nach X umstellt:

X = [mm] B^{-1} [/mm] * A * B

oder? Bzw. meine Frage: Wenn beispielsweise anfangs links vor dem X ein B steht, dann muss folglicherweise genau dieses B auf der anderen Seite ebenfalls links von der Matrix A stehen, oder? (dann halt als Inverse).

LG

        
Bezug
Matrizen LGS nach X umstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Di 11.09.2012
Autor: schachuzipus

Hallo dudu93,


> Hallo, ich habe eine Frage.
>  
> Wenn in der Aufgabe steht:
>  
> B X [mm]B^{-1}[/mm] = A
>  
> Dann folgt doch, wenn man nach X umstellt:
>  
> X = [mm]B^{-1}[/mm] * A * B [ok]
>  
> oder? Bzw. meine Frage: Wenn beispielsweise anfangs links
> vor dem X ein B steht, dann muss folglicherweise genau
> dieses B auf der anderen Seite ebenfalls links von der
> Matrix A stehen, oder? (dann halt als Inverse).

Das verstehe, wer will. Du hast doch oben den Fall, dass linkerhand vor dem [mm]X[/mm] das [mm]B[/mm] steht. Du multiplizierst die gesamte Gleichung von links mit dem Inversen von B, damit das linkerhand vefschwindet. Das ergibt rechterhand vor dem [mm]A[/mm] aber ein [mm]B^{-1}[/mm] - so wie du es auch hast. Dann alles von rechts mit [mm]B[/mm] multiplizieren, damit linkerhand das [mm]B^{-1}[/mm] verschwindet.

Du musst immer auf der entsprechenden Seite mit der Inversen multiplizieren - wenn denn die Inverse existiert ...

>  
> LG

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]