www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizen
Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Sa 28.04.2007
Autor: aineias

Aufgabe
Sei GL(n,K) die Menge der invertierbaren nxn-Matrizen über dem Körper K.
Weisen Sie nach, dass mit A, B [mm] \in [/mm] GL(n,K) auch A^-1 [mm] \in [/mm] GL(n,K)  und A * B [mm] \in [/mm] GL(n,K) ist.

hallö!
meine frage: reicht es, wenn ich hier 2 matrizen (A nud B) als ein beispiel setze und damit zeige, dass A^-1 und A * B  wieder zur menge der invertierbaren matrizen gehören??

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Sa 28.04.2007
Autor: schachuzipus

Hallo aineias,

ja, nimm [mm] \text{\underline{beliebige}} [/mm] invertierbare [mm] $n\times [/mm] n$ Matrizen $A$ und $B$ her und zeige, dass auch [mm] $A^{-1}$ [/mm] und $AB$ invertierbare [mm] $n\times [/mm] n$ Matrizen sind.

Ich glaube, das meintest du mit "als Beispiel setzen..", oder? Dann ist es nämlich ok ;-)


Gruß

schachuzipus

Bezug
        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Sa 28.04.2007
Autor: Hund

Hallo,

wenn du mit "als Beispiel setzte" meinst, einfach zwei Matritzten zu nehmen, dann geht das nicht. Du musst das allgemein beweisen, also zum Beispiel so:

A,B invertierbar, also det(A) und det(B) sind nicht 0.
det(AB)=det(A)det(B) ist also auch nicht 0.
Daraus folgt: AB invertierbar.

[mm] det(A^{-1})=\bruch{1}{det(A)} [/mm] ist dann auch nicht 0, also ist auch das inverse invertierbar.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]