Matrizen < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:37 Do 31.08.2006 | Autor: | Hollyane |
Aufgabe | Berechne die Matrix der Spieglungen an 1. y= 2/3x
2. x-Achse
3. y-Achse |
Beweise durch Matrizenmultiplikation:
Ist l die Drehung mit Drehwinkel alpha (und Zentum 0) und k die Drehund mit Drehwinkel beta (und Zentrum 0), dann ist k o l die Drehung mit Drehwinkel alpha+beta.
Ich versteh es einfach nicht. Hoffe ihr könnt mir helfen. Auch Ansätze würden mir sehr weiter helfen...
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.uni-protokolle.de/foren/viewt/83016,0.html
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:09 Fr 01.09.2006 | Autor: | leduart |
Hallo Hollyane
Eine Matrix bildet die Einheitsbasisvektoren auf die Spalten der Matrix ab, also den ersten [mm] \vektor{1 \\ 0} [/mm] auf die erste Spalte, den zweiten [mm] \vektor{0\\ 1} [/mm] auf die 2. Spalte. Deshalb mach einfach für a) eine Zeichnung, spiegle die Einheitsvektoren an der Geraden y=2/3*x , lies die 2 neuen Vektoren aus der Zeichnung ab , (genauer kannst du es, wenn du siehst, dass der erste um den doppelten Winkel der Geraden gedreht wird, der 2. erst in sein negatives verwandelt und danach um den doppelten Winkel gedreht wird. Der tan des Winkels ist 2/3.) Wenn du die 2 gespiegelten hast schreib sie als Spalten der Matrix.
Genauso gehst du bei b) vor 1. Matrix für um [mm] \alpha [/mm] gedrehte Vektoren , 2. Matrix für um [mm] \beta [/mm] gedrehte Vektoren, dann die 2 Matrizen multiplizieren. dabei muss die für die Drehung um [mm] \alpha+\beta [/mm] rauskommen. Dabei musst du die Additionstheoreme für [mm] sin(\alpha+\beta) [/mm] und [mm] cos(\alpha+\beta) [/mm] anwenden!
jetzt fang mal an und frag weiter, wenn du die ersten Ergebnisse hast.
Gruss leduart
|
|
|
|