www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Matric in C
Matric in C < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matric in C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Do 28.06.2007
Autor: nix19

Aufgabe
Diagonalisieren Sie die Matrc [mm] G=\pmat{ 2 & 0&0&0 \\ 0 & 2&0&0\\1&-2&0&-1\\2&-4&1&0 } [/mm] in [mm] \IC [/mm]

Mich irritiert das [mm] \IC. [/mm] Ich weiß nicht wie ich damit rechnen muss. kan mir das vielleicht einer mal für die eigenwerte zeigen, das wäre super lieb und nett.

        
Bezug
Matric in C: Antwort
Status: (Antwort) fertig Status 
Datum: 02:31 Fr 29.06.2007
Autor: schachuzipus

Hallo Nadine,

nicht irritieren lassen ;-)

Setze an wie immer, bestimme [mm] $det(A-\lambda\cdot{}\mathbb{E}_4)$ [/mm]

also [mm] det\pmat{ 2-\lambda & 0&0&0 \\ 0 & 2-\lambda&0&0\\1&-2&-\lambda&-1\\2&-4&1&-\lambda} [/mm]

Das Biest kannste schnell nach der ersten Zeile entwickeln mit Laplace und dann mit Sarrus.

Als charakteristisches Polynom sollte dann rauskommen:

[mm] $cp_A(\lambda)=(2-\lambda)(-\lambda^3+2\lambda^2-\lambda+2)$ [/mm]

Eine Nullstelle ist offensichtlich [mm] \lambda_1=2. [/mm]

Eine weitere kannst du schnell erraten: [mm] \lambda_2=2 [/mm]

Dann mach ne Polynomdivision [mm] (-\lambda^3+2\lambda^2-\lambda+2):(\lambda-2)=-\lambda^2-1 [/mm]

Und [mm] -\lambda^2-1=0\gdw\lambda^2=-1\gdw\lambda=\pm [/mm] i

Damit hast du deine 4 Eigenwerte.

Nun mach dich mal selber an die Berechnung der Eigenvektoren...

Viel Spaß ;-)


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]