www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Mathematisches Pendel
Mathematisches Pendel < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mathematisches Pendel: Hinweis
Status: (Frage) beantwortet Status 
Datum: 15:39 Di 19.05.2009
Autor: mb588

Aufgabe
Lösen Sie das Bewegungsproblem des ebenen mathematischen Pendels mit Hilfe der Lagrange'schen Gleichung 1. Art.

a) Formulieren Sie die Bewegungsbeschränkung g=0 für dieses System und führen Sie geeigenete generalisierte Koordinaten ein.

b) Stellen Sie die Lagrange-Funktion auf und formulieren Sie die Lagrange'schen Gleichung 1.Art in generalisierten Koordinaten.

Hey. Denn Lagrange'schen Formalismus verstehe ich, aber diese Aufgabe verwirrt mich. Soweit bin ich bis jetzt.
(mit x',y',z',...mein ich jeweils die Ableitung nach der Zeit)

[mm] L=T-V=\bruch{m}{2}*(x'^{2}+y'^{2}+z'^{2})+m*g*y [/mm]
Wobei das Koordinatensytstem so gewählt wurde, dass die x-Achse Horizontal und die y-Achse Vertikal ist.
Die generalisierten Koordinaten habe ich gewählt:
[mm] x=l*sin\phi [/mm] und [mm] y=l*cos\phi [/mm]
daraus folgt: [mm] L=\bruch{m}{2}*l^{2}*\phi'^{2}+m*g*l*cos\phi [/mm]

Für die Bewegungsbeschränkung gilt dann:
[mm] g=x^{2}+y^{2}+l^{2}=0 [/mm]

Will ich jetzt die Lagrange'schen Gleichung mit den generalisierten Koordinaten aufstellen, denn würde g=0.

also [mm] \bruch{d}{dt}(\bruch{\partial L}{\partial q'})-\bruch{\partial L}{\partial q}=\lambda [/mm] * [mm] \bruch{\partial g}{\partial q} [/mm]

Wobei q denn die generalisierten Koordinaten sind. Aber mit g in generalsisierten Koordianten gleich Null...würde da ja wiederum die Lagrange'schen Gleichung erster Art stehen.
Hab ich einen Denkfehler drin oder beachte etwas niicht? Kann mir einer weiterhelfen?

        
Bezug
Mathematisches Pendel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Di 19.05.2009
Autor: leduart

Hallo
[mm] g=x^2+y^2-l^2=0 [/mm]
[mm] dg/d\phi=0 [/mm]
ausser dem falschen Vorzeichen in g ist es  soweit richtig.
du solltest schreiben als gen. KO waehle ich den Auslenkwinkel  [mm] \Phi [/mm] mit x=.. ,
Gruss leduart

Bezug
                
Bezug
Mathematisches Pendel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Di 19.05.2009
Autor: mb588

Ja ok soweit ist das klar. Aber wenn jetzt [mm] \bruch{\partial g}{\partial \phi}=0 [/mm] denn wäre doch auch [mm] \lambda* \bruch{\partial g}{\partial \phi}=0. [/mm] was bedeuten würde, das auf der rechten Seite Null stehen würde also auch keine [mm] \lambda. [/mm] Also hätte ich wieder einen Ausdruck für die Lagrange'schen Gleichungen 2. Art, denn bei der 1. Art muss ja irgendwie was mit Lambda stehen auf der rechten Seite.

Bezug
                        
Bezug
Mathematisches Pendel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Di 19.05.2009
Autor: leduart

Hallo
un l erster Art zu haben, brauchst du ne zweite algg. Koordinate [mm] r=\wurzel{x^2+y^2} [/mm]
g=r-L=0dg/dr=1
dann kommt die Zentripetalkraft auf die Schnur raus.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]