Markov-Kette / Poisson-Vert. < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:15 Mi 21.06.2006 | Autor: | kl.mu |
Aufgabe | Sei X = [mm] (X_{n}: [/mm] n [mm] \in \IN) [/mm] eine Folge von unabhaengigen [mm] Poisson-\lambda [/mm] verteilten Zufallsvariablen [mm] X_{n}: (\Omega, \mathcal{A}, [/mm] P) [mm] \to (\IN_{0}, 2^{\IN_{0}}), [/mm] wobei [mm] \lambda [/mm] > 0 gilt.
Fuer w [mm] \in \Omega [/mm] sei [mm] S_{0}(\omega) [/mm] = 0 und [mm] S_{n}(\omega) [/mm] = [mm] \summe_{i=1}^{n} X_{i}(\omega).
[/mm]
(a) Dann ist S = [mm] (S_{n}: [/mm] n [mm] \in \IN_{0}) [/mm] eine homogene Markov-Kette. Geben Sie eine intuitive Begruendung dafuer.
(b) Geben Sie die 1-Schritt-Uebergangswahrscheinlichkeitsmatrix an.
(c) Zeigen Sie, dass keine (stationaere) Gleichgewichtsverteilung existieren kann. |
Hallo!
Ich bin der Meinung, dass sich (a) damit beantworten laesst, dass S die Markov-Eigenschaft erfuellt - sprich: um [mm] S_{n+1} [/mm] zu erhalten wird nur das Ergebnis von [mm] S_{n} [/mm] benoetigt, dazu wird nur noch [mm] X_{n+1} [/mm] addiert.
Damit handelt es sich schon mal um eine Markov-Kette. Homogen ist S, da die Uebergangswahrscheinlichkeit unabhaengig vom Zeitpunkt n ist (dieses kann ich aber irgendwie nicht begruenden).
Was mir jedoch mehr zu schaffen macht ist, dass ich keinen Ansatz fuer (b) habe. Ich komme einfach nicht darauf, wie ich die Uebergangswahrscheinlichkeiten berechnen kann.
Ich waere daher sehr dankbar, wenn mich jemand in die richtige Richtung weisen koennte, durch Ideen, Beispiele, etc.
Viele Gruesse
kl.mu
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:41 Mi 21.06.2006 | Autor: | DirkG |
Kernstück aller Überlegungen und Berechnungen ist die Rekursion [mm] $S_n=S_{n-1}+X_n$. [/mm] Und da die [mm] $X_k$ [/mm] unabhängig voneinander sind, sind auch [mm] $S_{n-1}$ [/mm] und [mm] $X_n$ [/mm] voneinander unabhängig, was folgende Rechnung ermöglicht:
[mm] $$P(S_n=y \bigm| S_{n-1}=x) [/mm] = [mm] \frac{P(S_n=S_{n-1}+X_n=y, S_{n-1}=x)}{P(S_{n-1}=x)} [/mm] = [mm] \frac{P(X_n=y-x, S_{n-1}=x)}{P(S_{n-1}=x)} \stackrel{!}{=} \frac{P(X_n=y-x)\cdot P(S_{n-1}=x)}{P(S_{n-1}=x)} [/mm] = [mm] P(X_n=y-x)$$
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:29 Mi 21.06.2006 | Autor: | kl.mu |
Vielen Dank. Dann war ich bei meinen Ansaetzen wohl doch nicht ganz daneben.
Somit muesste die Uebergangsmatrix folgendermassen aussehen [mm] p_{ij}=\begin{cases} e^{-\lambda} * \bruch{\lambda^{j - i}}{(j - i)!} , & i \le j \\ 0, & sonst \end{cases}
[/mm]
Es kann keine Gleichgewichtsverteilung existieren, da die Bedingung (G) [mm] \pi_{j} [/mm] = [mm] \summe_{i \in \IN_{0}} \pi_{i} p_{ij} [/mm] fuer alle j [mm] \in \IN_{0}, [/mm] nicht erfuellt wird.
Wuerde das zutreffen?
MfG
Eugen
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:27 Do 22.06.2006 | Autor: | DirkG |
Wenn du es hinreichend begründen kannst, dass dieses Gleichungssystem keine Lösung haben kann, dann ist es Ok.
Eine andere Möglichkeit: Stationarität erfordert [mm] $E(S_n)=\operatorname{const}$ [/mm] und somit wegen [mm] $S_n=S_{n-1}+X_n$, [/mm] d.h. [mm] $E(S_n)=E(S_{n-1})+E(X_n)$ [/mm] die Bedingung [mm] $E(X_n)=0$. [/mm] Und die ist hier offensichtlich nicht erfüllt, denn es ist [mm] $E(X_n)=\lambda>0$.
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:12 Do 22.06.2006 | Autor: | kl.mu |
Vielen Dank fuer die Hilfe!
An den Weg ueber den Erwartungswert habe ich gar nicht gedacht.
MfG
Eugen
|
|
|
|