Magmen und Homomorphismen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien [mm] (M,*,e_{M}) [/mm] und [mm] (N,°,e_{N}) [/mm] Monoide und [mm] M^x:=\{x \in M | \mbox\exists y \in M : y*x=x*y=e_{M}\}.
[/mm]
Zeige, dass [mm] M^x [/mm] ein Untermonoid von M ist und sogar eine Gruppe ist.
Sei [mm] \beta [/mm] :M->N Monoidhomomorphismus. Zeige, dass [mm] \beta(M^x)\subseteq N^x [/mm] gilt.
|
Im ersten Teil der Aufgabe weise ich das Untermonoidkriterium nach. Also, die Assoziativität, die ist natürlich gegeben, da je zwei Elemente assoziativ und sogar kommutativ auf das Neutralelement abgebildet werden. Und da zwei Elemente stets auf das Neutrale abgebildet werden, ist das Neutrale auch Element des Untermonoids. Deshalb ist das Ganze eine Gruppe, da nur das Inverse von x verknüpft mit x das Neutralelement ergeben muss,d.h. das gesamte Gebilde ist eine Gruppe (Gruppe=>assoziativ, Neurales, Inverses).
Der zweite Teil erweist sich dafür etwas komplizierter. Prinzipiell sollte [mm] N^x [/mm] genau wie [mm] M^x [/mm] definiert sein. Jedoch verstehe ich nicht, wieso nur die Inklusion gilt, und nicht Gleichheit. Ist damit vllt. gemeint, dass das Neutrale von M nicht in N liegen kann? (Die beiden Neutalelemente müssen ja nicht identisch sein!)
Was sagt ihr dazu?
Gruß, jacques2303
|
|
|
|
> Seien [mm](M,*,e_{M})[/mm] und [mm](N,°,e_{N})[/mm] Monoide und [mm]M^x:=\{x \in M | \mbox\exists y \in M : y*x=x*y=e_{M}\}.[/mm]
>
> Zeige, dass [mm]M^x[/mm] ein Untermonoid von M ist und sogar eine
> Gruppe ist.
> Sei [mm]\beta[/mm] :M->N Monoidhomomorphismus. Zeige, dass
> [mm]\beta(M^x)\subseteq N^x[/mm] gilt.
>
>
> Im ersten Teil der Aufgabe weise ich das
> Untermonoidkriterium nach. Also, die Assoziativität, die
> ist natürlich gegeben, da je zwei Elemente assoziativ und
> sogar kommutativ auf das Neutralelement abgebildet werden.
> Und da zwei Elemente stets auf das Neutrale abgebildet
> werden, ist das Neutrale auch Element des Untermonoids.
Kommutativ ist richtig (überträgt sich auf Teilmenge).
[mm] M^x [/mm] ist die Menge derjenigen Elemente, die ein Inverses besitzen, das gleichzeitig links- und rechtsinvers ist. Es werden aber nicht zwei Elemente stets auf das Neutrale abgebildet.
Beispiel: Betrachte [mm] \IZ_{15} [/mm] (nat. Zahlen modulo 15).
Zu 3 findest du keinen Partner x mit 3*x=1.
Es ist aber [mm] 2*8=8*2=16\equiv [/mm] 1, [mm] 7*13=13*7=91\equiv [/mm] 1,
aber [mm] 8*7=56\not\equiv [/mm] 1
Zwei beliebige Elemente aus [mm] M^x [/mm] geben also nicht das neutrale Element!
Allerdings ist [mm] (8*7)*11=616=41*15+1\equiv [/mm] 1, also hat das Produkt zweier solcher Elemente 8 und 7 aus [mm] M^x [/mm] ein Inverses.
Was du zeigen musst, ist, dass die Menge aus [mm] M^x [/mm] bezüglich * abgeschlossen ist, also das Produkt zweier Elemente aus [mm] M^x [/mm] wieder ein Inverses hat und dass dieses sowohl rechts- als auch linksinvers ist.
Tipp: Dieses lässt sich aus den Inversen der beiden Elemente konstruieren.
[mm] M^x [/mm] selber muss gar nicht kommutativ sein!
|
|
|
|
|
Hallo,
vielen Dank für deine Hilfe. Durch das Inverse (xy)^-1 und der Assozativität bzw. der Existenz eines Neutralelements kann man die Abgeschlossenheit nachrechnen. Und da ein Inverses existiert, zu jedem Element bzw. Produkt zweier Elemente, folgt daraus,dass dies eine Gruppe ist.
Zur zweiten Teilaufgabe:Ist mein Ansatz hier richtig?
Gruß, jacques2303
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Di 04.11.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|