www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - M nichtleer, Infimum
M nichtleer, Infimum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

M nichtleer, Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 So 19.11.2006
Autor: Phoney

Aufgabe
M ist eine nichtleere nach unten beschränkte Teilmenge von [mm] \IR [/mm] mit einer größten unteren Schranke.
Beweisen Sie, dass es zu jedem [mm] $\varepsilon [/mm] >0$ ein [mm] $x_e\in [/mm] M$ gibt, sodass $inf M [mm] \le x_\varepsilon

Hallo.

Also mathematisch bekomme ich hier einfach keinen Ansatz.

mir ist ganz klar, dass wenn wir eine größte untere Schranke inf(M) haben, dass dann das [mm] x_\varepsilon [/mm] größer oder gleich dem größten unteren Schranke ist, da [mm] x_\varepsilon [/mm] ja ein Element der Menge M ist.

Wenn inf M beispielsweise inf(3) ist Sup(M) wäre 10, dann wäre ja unsere Gleichung

inf(3) [mm] \le [/mm] 4 < inf(3) + 2

Also ich sage, die Menge lautet

M = [mm] [x_1,x_2,x_3,...] [/mm]

mit Zahlen dann

M = [3,4,5]

[mm] x_\varepsilon [/mm] wäre dann eben [mm] x_2 [/mm] = 4

Klar, wenn ich das jetzt nocht ein bisschen detaillierter schreibe, wäre das "anschaulich". Aber ich soll es ja beweisen. Habe aber keinen Schimmer hier.

Grüße
Phoney

        
Bezug
M nichtleer, Infimum: Defintion von Infimum
Status: (Antwort) fertig Status 
Datum: 16:52 So 19.11.2006
Autor: moudi

Hallo Phoney

Viel gibt es da nicht zu beweisen:

Gäbe es ein [mm] $\varepsilon>0$ [/mm] zu dem es keine [mm] $x_{\varepsilon}\in [/mm] M$ mit der genannten Eigenschaft gäbe, so wären ja alle Elemente der Menge M grösser oder gleich [mm] $\inf M+\varepsilon$, [/mm] aber dann wäre inf M nicht die grösste untere Schranke.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]