www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lösungsmenge lineares GS
Lösungsmenge lineares GS < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsmenge lineares GS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Fr 15.11.2013
Autor: mathe-antifreak

Aufgabe
Es seien [mm] A:=\pmat{ 0 & 2 & 2 & -3 & 2 & 1 \\ -2 & 2 & 4 & -3 & 1 & 0 \\ 1 & 1 & -1 & 0 & -2 & 1 \\ 0 & 1 & 2 & 3 & 4 & 1 \\ }, b:=\pmat{ 2 \\ 0 \\ 1 \\ 1 } [/mm] und [mm] c:=\pmat{ -1 \\ 1 \\ 0 \\ 2 } [/mm]
Berechnen Sie die Lösungsmenge des durch ( A, b ) und des durch ( A, c ) gegebenen Systems linearer Gleichungen.

Hallo miteinander.
Ich habe die Matrix A und b zunächst zusammengeschlossen, und dann das Gauß'sche Eliminationsvefahren angewendet.
[mm] \pmat{ 1 & 0 & 0 & 0 & 31/8 & 5/8 & 7/2 \\ 0 & 1 & 0 & 0 & -5/2 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 27/8 & 1/8 & 3/4 \\ 0 & 0 & 0 & 1 & -1/12 & 1/12 & -1/6 \\} [/mm]
So jetzt zu meinem Problem: bis jetzt haben wir nur Quadratische Matrizen bearbeitet, sodass nach dem Verfahren nur mehr die Einheitsmatrix dasteht, dann war die Lösung recht simpel. Doch jetzt weiß ich nicht, wie ich die Lösung bilden soll...
Kann mir wer weiterhelfen?
Vielen Dank


        
Bezug
Lösungsmenge lineares GS: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Fr 15.11.2013
Autor: weightgainer


> Es seien [mm]A:=\pmat{ 0 & 2 & 2 & -3 & 2 & 1 \\ -2 & 2 & 4 & -3 & 1 & 0 \\ 1 & 1 & -1 & 0 & -2 & 1 \\ 0 & 1 & 2 & 3 & 4 & 1 \\ }, b:=\pmat{ 2 \\ 0 \\ 1 \\ 1 }[/mm]
> und [mm]c:=\pmat{ -1 \\ 1 \\ 0 \\ 2 }[/mm]
>  Berechnen Sie die
> Lösungsmenge des durch ( A, b ) und des durch ( A, c )
> gegebenen Systems linearer Gleichungen.
>  Hallo miteinander.
>  Ich habe die Matrix A und b zunächst zusammengeschlossen,
> und dann das Gauß'sche Eliminationsvefahren angewendet.
>  [mm]\pmat{ 1 & 0 & 0 & 0 & 31/8 & 5/8 & 7/2 \\ 0 & 1 & 0 & 0 & -5/2 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 27/8 & 1/8 & 3/4 \\ 0 & 0 & 0 & 1 & -1/12 & 1/12 & -1/6 \\}[/mm]
>  
> So jetzt zu meinem Problem: bis jetzt haben wir nur
> Quadratische Matrizen bearbeitet, sodass nach dem Verfahren
> nur mehr die Einheitsmatrix dasteht, dann war die Lösung
> recht simpel. Doch jetzt weiß ich nicht, wie ich die
> Lösung bilden soll...
>  Kann mir wer weiterhelfen?
>  Vielen Dank
>  

Du kannst sie quadratisch machen, indem du einfach zwei Zeilen mit 0er unten ergänzt. Aber das ist nicht nötig, weil die einem auch nicht wirklich weiterhelfen...

Hier sind schon per se weniger Bedingungen an die gesuchten Zahlen gestellt als es gesuchte Zahlen gibt, d.h. es wird keine eindeutige Lösung geben.

Also: die letzte Zeile deiner umgeformten Matrix (die ich nicht nachgerechnet habe) ist nur die Kurzschreibweise für

[mm] $0*x_1 [/mm] + [mm] 0*x_2 [/mm] + [mm] 0*x_3 [/mm] + [mm] 1*x_4 [/mm] - [mm] \bruch{1}{12} [/mm] * [mm] x_5 [/mm] + [mm] \bruch{1}{12} [/mm] * [mm] x_6 [/mm] = - [mm] \bruch{1}{6} [/mm] $

Jetzt bleiben (der Einfachheit halber) [mm] $x_5$ [/mm] und [mm] $x_6$ [/mm] als Parameter stehen und du bestimmst damit die Lösungen für die anderen 4 Unbekannten.

Vielleicht hilft's...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]