Lösbarkeit lin.Gleichungss. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei A ∈ [mm] K^{mxn} [/mm] und b ∈ [mm] K^{mx1} [/mm] gibt, so dass Ax = c eine eindeutige Lösung hat, dann hat auch Ax =b eine eindeutige Lösung. |
Hallo :)
Ich sitze hier an dieser Aufgabe und finde einfach keinen Ansatz. Ich tue mich leider auch mit dem Verstehen der Aufgabe etwas schwer.
In unserem Skript hab ich zwei Sätze gefunden, auf die man anscheinend zurückgreifen soll.
"Satz 2.24. (Lösbarkeitskriterium) Sei A ∈ [mm] K^{m×n} [/mm] eine Matrix in Zeilenstufenform
bzw. in Gaußscher Normalform mit r Stufen und sei b ∈ [mm] K^{m×1} [/mm] . Dann gilt Folgendes:
Das lineare Gleichungssystem System A x = b ist genau dann lösbar, wenn
br+1 = . . . = b m
sowie
"Satz 2.27. Sei A ∈ [mm] K^{m×n} [/mm] und sei b ∈ [mm] K^{m×1} [/mm] . Angenommen, das (inhomogene) lineare
Gleichungssytem A x = b sei lösbar. Dann gilt:
Lös ( A , b ) = { z + y | y ∈ Lös ( A , 0 ) } ,
wobei z eine spezielle L ̈sung des (inhomogenen) linearen Gleichungssytems
A x = b ist, d.h. z ∈ Lös ( A , b )."
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:41 Fr 16.11.2012 | Autor: | fred97 |
> Sei A ∈ [mm]K^{mxn}[/mm] und b ∈ [mm]K^{mx1}[/mm] gibt, so dass Ax = c
> eine eindeutige Lösung hat, dann hat auch Ax =b eine
> eindeutige Lösung.
> Hallo :)
>
> Ich sitze hier an dieser Aufgabe und finde einfach keinen
> Ansatz. Ich tue mich leider auch mit dem Verstehen der
> Aufgabe etwas schwer.
> In unserem Skript hab ich zwei Sätze gefunden, auf die
> man anscheinend zurückgreifen soll.
>
> "Satz 2.24. (Lösbarkeitskriterium) Sei A ∈ [mm]K^{m×n}[/mm] eine
> Matrix in Zeilenstufenform
> bzw. in Gaußscher Normalform mit r Stufen und sei b ∈
> [mm]K^{m×1}[/mm] . Dann gilt Folgendes:
> Das lineare Gleichungssystem System A x = b ist genau dann
> lösbar, wenn
> br+1 = . . . = b m
>
> sowie
>
> "Satz 2.27. Sei A ∈ [mm]K^{m×n}[/mm] und sei b ∈ [mm]K^{m×1}[/mm] .
> Angenommen, das (inhomogene) lineare
> Gleichungssytem A x = b sei lösbar. Dann gilt:
> Lös ( A , b ) = { z + y | y ∈ Lös ( A , 0 ) } ,
> wobei z eine spezielle L ̈sung des (inhomogenen) linearen
> Gleichungssytems
> A x = b ist, d.h. z ∈ Lös ( A , b )."
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Du sollst also zeigen:
besteht Lös( A , c ) aus genau einem Element, so auch Lös( A , b )
Mit obigem Satz ist
Lös ( A , c ) = { z + y | y ∈ Lös ( A , 0 ) }, wobei z eine Spezielle Lösung von Ax=c ist.
Wenn Lös( A , c ) aus genau einem Element besteht, so muß Lös( A , 0 )={ 0 } sein.
Mit dieser Info schau Dir Lös ( A , b ) an.
FRED
|
|
|
|