Lineare Unabhängigkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien [mm] K=F_2={0,1} [/mm] der Körper mit zwei Elementen und M eine Menge. Zeige:
a) P(M) := {T;T enthalten M} ist bzgl. der symmetrischen Differenz S+T := (S vereinigt T) \ (S geschnitten T) und der einzig möglichen Skalarmultiplikation ein K-Vektorraum.
b) B := {{x}; x Element M} enthalten P(M) ist linear unabhängig.
c) B ist genau dann EZS, wenn M endlich ist. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Ich bin zum ersten Mal hier und hoffe gegen keine Forenregel zu verstoßen. Ich habe zu der Aufgabe mehrere Fragen. In a) muss ich ja zeigen, dass P(M) ein K-Vektorraum ist und dann muss ich die Vektorraumaxiome zeigen, aber ich weiß nicht wie...
Bei b) habe ich mir überlegt, dass {x} eine Menge ist und wenn es linear abhängig ist, dann muss ich ja zeigen, dass [mm] a_1v_1+...+a_nv_n=0 [/mm] ist für [mm] a_1=...=a_n, [/mm] aber wie komme ich von {x} zu den Vektoren?
Bei c) muss ich zeigen, dass die lineare Hülle von B = K ist und dafür brauche ich ja die Vektoren aus b).
Über eine Antwort würde ich mich sehr freuen!
|
|
|
|
In deiner ganzen Aufgabe hast du keine Vektoren im Sinne von Elemnten des [mm] \IR^n, [/mm] sondern Mengen. Die Skalarmultiplikation ist wohl [mm] 1\cdot{}S=S [/mm] und [mm] 0\cdot{}S=\{\}.
[/mm]
Bei b) musst du dann z.B. zeigen, dass aus
[mm] \lambda_1\cdot{}\{x_1\}+...+\lambda_n\cdot{}\{x_n\}=\{\} [/mm] (mit [mm] |M|=n\le\infty, x_i\in{}M, \lambda_i\in{}F_2) [/mm]
[mm] \lambda_i=0 [/mm] folgt.
Wo genau hast du bei a) Probleme?
c) Nein, du brauchst keine Vektoren. Nimm die Mengen und zeig damit, dass die lineare Hülle der einelementigen Mengen aus M sämtliche Teilmengen von M erzeugt.
Schau dir mal an, was du erhälst, wenn du zwei einelementige Mengen addierst.
Beispiel: Seien [mm] x_1,x_2\in [/mm] M, [mm] x_1 \not=x_2: \{x_1\}+\{x_2\}=(\{x_1\}\cup\{x_2\}) \setminus(\{x_1\}\cap\{x_2\})=\{x_1,x_2\} \setminus\{\}=\{x_1,x_2\}
[/mm]
Hoffe, dir ist die Aufgabe jetzt etwas klarer.
|
|
|
|
|
Ok, danke schon mal für deine Hilfe, also c) hab ich denke ich verstanden. Bei a) stehe ich aber irgendwie immer noch auf dem Schlauch. Also, ich muss ja die Vektorraumaxiome zeigen, das heißt bei V1 muss ich zeigen, dass es eine abelsche Gruppe ist. So, das mit dem neutralen und dem inversen Element hab ich verstanden, aber wie zeige ich die Kommutativität und die Assoziativität bezüglich [mm] F_2? [/mm] Bei b) grübel ich noch mal ein bisschen, das krieg ich dann hoffentlich hin. Danke noch mal.
|
|
|
|
|
> Bei a) stehe ich aber irgendwie immer noch
> auf dem Schlauch. Also, ich muss ja die Vektorraumaxiome
> zeigen, das heißt bei V1 muss ich zeigen, dass es eine
> abelsche Gruppe ist. So, das mit dem neutralen und dem
> inversen Element hab ich verstanden, aber wie zeige ich die
> Kommutativität und die Assoziativität bezüglich [mm]F_2?[/mm]
Was meinst du mit Kommutativität und Assoziativität bzgl [mm] F_2? [/mm] Für die abelsche Gruppe musst du doch zeigen, dass P(M) kommutativ und assoziativ bzgl + ist. Bei der Kommutativität musst du dran denken, dass für Mengen A,B gilt: [mm] A\cup{}B=B\cup{}A [/mm] und [mm] A\cap{}B=B\cap{}A
[/mm]
Für die Assoziativität ist es hilfreich zu wissen, dass A [mm] \backslashB\cup{}C=(A\cup{}C)\backslash(B\cap{}C)
[/mm]
Neben den anderen Vektorraumeigenschaften musst du übrigens noch zeigen, dass P(M) bzgl. + und [mm] \cdot [/mm] abgeschlossen ist.
> Bei b) grübel ich noch mal ein bisschen, das krieg ich dann
> hoffentlich hin.
Viel Erfolg!
|
|
|
|
|
Danke für die Hilfe, ich werd mich aber wohl noch mal länger dransetzen müssen.
|
|
|
|