www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Optimierung" - Lineare Optimierung, Ax = b
Lineare Optimierung, Ax = b < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Optimierung, Ax = b: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:56 Di 03.01.2017
Autor: Joseph95

Aufgabe
Betrachte LP in Standardform
min [mm] c^{T}x, [/mm]
  s.t. Ax = b,
       x [mm] \ge [/mm] 0.

Beweisen Sie oder geben Sie Gegenbeispiele zu den Aussagen.
i) Eine Basislösung [mm] x_{B} [/mm] ist genau dann optimal, wenn die reduzierten Kosten c' positiv sind.
ii) Zu jedem LP mit n unbeschränkten Variablen gibt es äquivalentes LP mit n+1 nicht-negativen Variablen.
A besitzt nun vollen Rang
iii) Eine Variable, die in Basis aufgenommen wurde, kann in der nächsten Iteration nicht aus der Basis entfernt werden.
iv) Es sei x* eine optimale Lösung zu der Basis B. Angenommen, es existiere eine zweitbeste zulässige Basislösung x' zur Basis B' und x [mm] \not [/mm] x'. Dann sind B und B' adjazent.


Hey Leute,

ich bräuchte nochmal eure Hilfe. Könnte mir vielleicht jemand einen Rat zur oben genannten Aufgabe gibt. Kann mir jemand vielleicht Helfen, denn ich komme gar nicht zu recht.


Viele Grüße,
Joseph95

        
Bezug
Lineare Optimierung, Ax = b: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:23 Do 05.01.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]