www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Legendre Polynome
Legendre Polynome < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Legendre Polynome: Orthognalisierung
Status: (Frage) beantwortet Status 
Datum: 20:09 Mi 05.12.2007
Autor: Vittoria

Aufgabe
L0, L1, L2 seien Legendre Polynome (normiert auf <Lj, Lj> = 1). Bilden Sie für

f(x)=exp x

die Summe

f*(x) = <f, L0>L0(x) + <f, L1>L1(x) + <f, L2>L2(x) für x aus [-1,1]

und vergleichen sie f* und f durch Berechnung einzelner Funktionswerte

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo! :)

Mein Problem bei der Aufgabenstellung ist zu verstehen, wie ich diese Polynome aufstellen soll, leider habe ich dazu im Internet keine verständliche Erklärung gefunden. Ich hoffe ihr könnt mir helfen.

Lg Vicky

        
Bezug
Legendre Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 Mi 05.12.2007
Autor: rainerS

Hallo Vicky!

> L0, L1, L2 seien Legendre Polynome (normiert auf <Lj, Lj> =
> 1). Bilden Sie für
>  
> f(x)=exp x
>
> die Summe
>  
> f*(x) = <f, L0>L0(x) + <f, L1>L1(x) + <f, L2>L2(x) für x
> aus [-1,1]
>  
> und vergleichen sie f* und f durch Berechnung einzelner
> Funktionswerte
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Hallo! :)
>  
> Mein Problem bei der Aufgabenstellung ist zu verstehen, wie
> ich diese Polynome aufstellen soll, leider habe ich dazu im
> Internet keine verständliche Erklärung gefunden. Ich hoffe
> ihr könnt mir helfen.

Ich weiß noch nicht, was du nicht verstehst. Die Definition der Legendrepolynome kennst du?

Das Skalarprodukt ist definiert über

[mm] \left< f,g\right> = \integral_{-1}^{+1} f(x) g(x) dx [/mm].

Du schaust den Raum der auf dem Intervall [mm][-1,+1][/mm] quadratintegrablen Funktionen an, also den Raum der Funktionen f, für die [mm][/mm] existiert. Das ist ein Hilbertraum, und die Legendrepolynome bilden eine Orthogonalbasis in diesem Raum.

Daher kann man jede solche Funktion f als Linearkombination von Legendrepolynomen schreiben.

Mit der üblichen Definition der Legendrepolynome [mm]P_n[/mm] (siehe zum Beispiel []hier oder []hier) gilt:

[mm] \left = \begin{cases} 0, & n\not=m \\ \bruch{2}{2n+1}, & n=m \end{cases} [/mm].

Wegen der Normierung [mm] =1[/mm] unterscheiden sich die hier genannten Polynome [mm]L_j[/mm] von den üblichen Legendrepolynomen [mm]P_j[/mm] durch einen konstanten Faktor.

Damit müsstest du loslegen können: Normierungsfaktor ausrechnen; [mm]f(x)=\exp(x)[/mm] einsetzen und ausrechnen; [mm]f[/mm] und [mm]f^\ast[/mm] vergleichen.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]