www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - LR Zerlegbarkeit
LR Zerlegbarkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LR Zerlegbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:45 So 06.09.2009
Autor: DarkCell

Aufgabe 1
Zu den beiden vorgegeben Matrizen
[mm] A:=\pmat{ -1 & 0 & 0 \\ -2 & 2 & 0 \\ 3 & -3 & 3} [/mm]
[mm] B:=\pmat{ 1 & 2 & -3 \\ 0 & -2 & 3 \\ 0 & 0 & -3} [/mm]
sowie der (3,3) Nullmatrix N bewerte man folgende Aussagen
(1) A*B ist direkt LR zerlegbar ohne dass Zeilenvertauschungen nötig sind.
(2) Die in Blockdarstellung gegebene (6,6) Matrix W [mm] :=\pmat{ B & B \\ N & 2B } [/mm] ist diagonalisierbar

Aufgabe 2
Zu den beiden vorgegeben Matrizen
[mm] A:=\pmat{ -1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -3 & -1} [/mm]
[mm] B:=\pmat{ 3 & 3 & -3 \\ 0 & -2 & 2 \\ 0 & 0 & 1} [/mm]
bewerte man folgende Aussagen
(1) A*B ist LR zerlegbar mit lauter negativen Diagonalelementen in der R-Matrix

Mit diesen drei Aussagen hab ich Probleme. Bei beiden Aufgaben sind die Matrizen vom Aussehen ja schon sehr nah dran an einer LR Zerlegung. Aber gibt es aufgrunddessen Kriterien von denen ich auf die Form der LR Zerlegung schließen kann, ohne sie auszurechnen? Wenn ich ganz stumpf A*B ausrechne und anschließend LR zerlege, komme ich auf darauf ob die Aussagen wahr sind. Aber ich denke, dass ich diesen Aufwand nich betreiben muss.

Und bei Aufgabe 1 zweite Aussage. Ich weiß, dass ich obere rechte Dreiecksmatrizen immer diagonaliseren kann. Und ich weiß z.b. von Eigenwerten, dass sich bei oberen Dreiecks-Block-Matrizen Das Eigenwertproblem auf die einzelnen Blockmatrizen beschränkt. Gilt dies in etwa auch für dieses Problem? Dass ich, weil es sich um eine obere Dreiecksblockmatrize handelt, sie auch immer diagonaliseren kann?

Danke schoma im voraus

        
Bezug
LR Zerlegbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Mo 07.09.2009
Autor: DerGraf

Hallo,
ich hab mir deine Aufgen kurz mal angeschaut.
Zu der ersten Aussage:

[mm] \begin{pmatrix} -1 & 0 & 0 \\ -2 & 2 & 0 \\ 3 & -3 & 3\end{pmatrix}*\pmat{ 1 & 2 & -3 \\ 0 & -2 & 3 \\ 0 & 0 & -3}=\begin{pmatrix} -1 & 0 & 0 \\ -2 & 2 & 0 \\ 3 & -3 & 3\end{pmatrix}*\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}*\pmat{ 1 & 2 & -3 \\ 0 & -2 & 3 \\ 0 & 0 & -3}=\begin{pmatrix} -1 & 0 & 0 \\ -2 & 2 & 0 \\ 3 & -3 & 3\end{pmatrix}*\pmat{ -1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3}*\pmat{ -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3}*\pmat{ 1 & 2 & -3 \\ 0 & -2 & 3 \\ 0 & 0 & -3} [/mm]

Das Produkt der ersten 2 Matrizen ergibt L und das Produkt der anderen 2 Matrizen R.

Du kommst also zum Ergebnis mit recht einfachen Rechnungen und ohne Zeilen tauschen zu müssen.

Der gleiche Trick funktioniert auch bei der dritten Aussage.

Zur 2. Aussage:

Du hast bereits eine Matrix mit Dreiecksgestalt gegeben. Diese hat in ihrer Hauptdiagonalen schon ihre Eigenwerte stehen (-6,-4,-3,-2,1 und 2). Wenn du jetzt zu diesen 6 Eigenwerten auch noch 6 unabhängige Eigenvektoren findest, ist deine Matrix W diagonalisierbar.

Gruß DerGraf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]