Kurven im Raum < GeoGebra < Mathe-Software < Mathe < Vorhilfe
|
Hallo an Alle!
Ich habe zwei Kurven parametrisiert in den (u,v) Variablen. Wie kann ich denn den Schnittpunkt der beiden Kurven angeben?
[mm] a=-u*sin(\alpha)+v*cos(\alpha) [/mm] und [mm] u*cos(\alpha)*sin(\beta)+v*sin(\alpha)sin(\beta)+(u^2-v^2)*cos(\beta); [/mm] v=constant
[mm] b=-u*sin(\alpha)+v*cos(\alpha) [/mm] und [mm] u*cos(\alpha)*sin(\beta)+v*sin(\alpha)sin(\beta)+(u^2-v^2)*cos(\beta); [/mm] u=constant
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:17 Di 15.05.2012 | Autor: | fred97 |
> Hallo an Alle!
>
> Ich habe zwei Kurven parametrisiert in den (u,v) Variablen.
> Wie kann ich denn den Schnittpunkt der beiden Kurven
> angeben?
> [mm]a=-u*sin(\alpha)+v*cos(\alpha)[/mm] und
> [mm]u*cos(\alpha)*sin(\beta)+v*sin(\alpha)sin(\beta)+(u^2-v^2)*cos(\beta);[/mm]
> v=constant
>
> [mm]b=-u*sin(\alpha)+v*cos(\alpha)[/mm] und
> [mm]u*cos(\alpha)*sin(\beta)+v*sin(\alpha)sin(\beta)+(u^2-v^2)*cos(\beta);[/mm]
> u=constant
Ganz ehrlich: ich verstehe nicht, wovon Du sprichst, denn:
1. einmal sind u und v Variablen; dann sagst Du v=constan und u= constant.
2. Wo ist der Unterschied zwischen a und b ? So wie es oben steht ist a=b.
3. Was hat es mit dem Ausdruck $ [mm] u\cdot{}cos(\alpha)\cdot{}sin(\beta)+v\cdot{}sin(\alpha)sin(\beta)+(u^2-v^2)\cdot{}cos(\beta) [/mm] $ auf sich ? Der taucht auch zweimal auf.
FRED
|
|
|
|
|
Hallo fred 97. Die Kurven sind auf einem hyperbolischen Paraboloid die Meridiane bzw. die Breiten. Aus diesem Grund sind u und v jeweils einmal konstant, so dass sie in jedem Punkt senkrecht aufeinander stehen. (Oder bin ich falsch?) Ich habe die Parametrisierung des HP [mm] (u,v,u^2-v^2) [/mm] mit den Kugelkoordinaten multipliziert und den ersten und dritten Vektor als die jeweiligen Argumente der Kurve genommen. Jetzt würde ich gern beide Kurven schneiden um in diesem Punkt die Tangentialebene zu berechnen/zeichnen. Ich erstelle in Geogebra ein Arbeitsblatt dafür.
Kannst du mir hier weiter helfen? Oder gehe ich das falsch an?
Liebe Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:07 Mi 16.05.2012 | Autor: | leduart |
Hallo
offensichtlich sind das keine parametrisierten Raumkurven, [mm] t=>R^3 [/mm] sondern Schnitte von Flaechen. gib erst mal die Flaechenn an, und dann die Schnitte.
wie du allerdings Flaechen mit 4 parametern, [mm] u,v,\alph,\beta [/mm] schreiben kannst ist mir unklar, oder ist [mm] \alpha, \beta [/mm] fest? dann muss der Schnittpunkt ja erst mal , falls existent auf dem Schnitt der 2 Schnitte liegen ?
Gruss leduart
|
|
|
|