Kreisteilungskp., zykl. Erw. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 01:54 Do 17.03.2011 | Autor: | Lippel |
Aufgabe | Sei [mm] $p\:$ [/mm] prim mit [mm] $p-1=\produkt_{\nu=1}^n p_{\nu}$, [/mm] wobei die [mm] $p_\nu$ [/mm] paarweise verschiedene Primzahlen seien. [mm] $\zeta_p \in \overline{\IQ}$ [/mm] primitive p-te Einheitswurzel.
Zeigen Sie: [mm] $\IQ(\zeta_p)/\IQ$ [/mm] ist zyklische Galoiserweiterung mit genau [mm] $2^n$ [/mm] verschiedenen Zwischenkörpern. |
Hallo,
ich würde mich sehr freuen, wenn mir jemand sagen kann, ob es stimmt, was ich gemacht habe.
Zunächst ist [mm] $f:=X^p-1 \in \IQ[X]$ [/mm] separabel, da $f' = [mm] pX^{p-1}$ [/mm] und somit, da [mm] $min_{\IQ}(\zeta_p) \:|\: X^p-1$, [/mm] ist [mm] $\zeta_p$ [/mm] separabel über [mm] $\IQ$. [/mm] Außerdem ist [mm] $\IQ(\zeta_p)$ [/mm] als Zerfällungskörper von [mm] $X^p-1$ [/mm] normal über [mm] $\IQ$. [/mm] Damit ist die Erweiterung [mm] $\IQ(\zeta_p)/\IQ$ [/mm] galoissch.
Es ist [mm] $Gal(\IQ(\zeta_p)/\IQ) \cong (\IZ/p\IZ)^{\times} \Rightarrow ord\: Gal(\IQ(\zeta_p)/\IQ) [/mm] = [mm] ord\:(\IZ/p\IZ)^{\times} [/mm] = p-1 = [mm] \produkt_{\nu=1}^n p_{\nu}$
[/mm]
Es ist [mm] $(\IZ/p\IZ)^{\times}$ [/mm] natürlich abelsch. Es gibt bis auf Isomorphie nur eine abelsche Gruppe mit [mm] $\produkt_{\nu=1}^n p_{\nu}$ [/mm] Elementen (aus dem Hauptsatz über endlich erzeugte abelsche Gruppen), nämlich [mm] $\IZ/\produkt_{\nu=1}^n p_{\nu}\IZ \cong \bigoplus_{\nu=1}^n \IZ/p_{\nu}\IZ$. [/mm] Diese ist zyklisch, da die [mm] $p_\nu$ [/mm] alle paarweise teilerfrend sind. Sie wird dann durch das Element $(1, [mm] \ldots, [/mm] 1)$ erzeugt.
[mm] $\Rightarrow Gal(\IQ(\zeta_p)/\IQ) \cong \bigoplus_{\nu=1}^n \IZ/p_{\nu}\IZ$
[/mm]
Nun zu den Untergruppen: diese haben doch allgemein die Form [mm] $\bigoplus_{\nu_i}^{n_i}\IZ/p_{\nu_i}\IZ$ [/mm] mit [mm] $\{\nu_i\} \subset \{1, \ldots, n_i\}, n_i \in \{1, \ldots, n\}$.
[/mm]
Ich dacht nun man könnte einen Isomorphismus zwischen der Menge der Untergruppen und der Menge [mm] $\{(x_i)_{i=1,\ldots,n}, x_i \in \IZ/2\IZ\}$, [/mm] also der Menge der n-Tupel mit Einträgen 0 oder 1, erklären, mit [mm] $\IZ/p_1\IZ \mapsto (1,0,\ldots,0), \IZ/p_2\IZ \oplus \IZ/p_4\IZ \mapsto [/mm] (0,1,0,1,0 [mm] \ldots,0)$ [/mm] usw.
Ich hoffe das Muster wird klar. Wie kann ich das verständlich aufschreiben?
Es wird damit auf jeden Fall klar, dass die Anzahl der Untergruppen gerade der Anzahl der Binärzahlen mit n Stellen, also [mm] $2^n$, [/mm] entspricht.
Vielen Dank für die Hilfe,
LG Lippel
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:24 Sa 19.03.2011 | Autor: | Lippel |
Hallo, ich bin weiter an einer Antwort interessiert.
Würde mich freuen, wenn mir jemand helfen könnte.
LG Lippel
|
|
|
|
|
Hallo,
im Prinzip fängst du doch wunderbar an. Wieviele Teilmengen hat denn [mm] \{1,...,n\}? [/mm] Ich meine [mm] 2^{n}, [/mm] oder? Komisch...
Im Ernst: Du bist quasi fertig. Zu jeder Teilmenge gibt es genau ein Tupel Primzahlen und umgekehrt.
Viele Grüße,
Tagesschau.
P.S.: Wo kommt die Aufgabe her? Es sind doch im ganzen Land Ferien!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:41 So 20.03.2011 | Autor: | Lippel |
Hallo, vielen Dank für deine Antwort.
> P.S.: Wo kommt die Aufgabe her? Es sind doch im ganzen
> Land Ferien!
... schreibe nächste Woche Algebraklausur. Da ist nicht viel mit Ferien.
LG Lippel
|
|
|
|