www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Kosten-, Erlös-, Gewinnfunktio
Kosten-, Erlös-, Gewinnfunktio < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kosten-, Erlös-, Gewinnfunktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Mi 16.02.2011
Autor: Domee

Aufgabe
Im Angebotsmonopol beträgt die Säättigungsmenge 100 Mengeneinheiten, der Höchstpreis 5000,00€. Der Gesamtkostenverlauf des Anbieters ist linear. Bei x = 20 betragen die Gesamtkosten 80.000,00€, bei x=80 betragen sie 116.000,00€. Wie lautet die Gleichung der
a.) Erlösfunktion
b.) Gesamtkostenfunktion
c.) Gewinnfunktion
d.) Berechnen Sie die Gewinnschwelle und -grenze.

Hallo ihr Lieben,

bei der o.g. Aufgabe komme ich leider gar nicht weiter.
Beim Aufstellen der Erlösfunktion fallen schon enorme Probleme an.
Ich weiß, dass E(x) = p(x) *x ,
allerdings weiß ich nicht, was ich für p(x) geschweige denn  für x einsetzten soll.
Denkbar wäre für mich für x die größtmögliche Produktionsmenge einzusetzen, also 100.

        
Bezug
Kosten-, Erlös-, Gewinnfunktio: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mi 16.02.2011
Autor: weightgainer


> Im Angebotsmonopol beträgt die Säättigungsmenge 100
> Mengeneinheiten, der Höchstpreis 5000,00€. Der
> Gesamtkostenverlauf des Anbieters ist linear. Bei x = 20
> betragen die Gesamtkosten 80.000,00€, bei x=80 betragen
> sie 116.000,00€. Wie lautet die Gleichung der
>  a.) Erlösfunktion
>  b.) Gesamtkostenfunktion
>  c.) Gewinnfunktion
>  d.) Berechnen Sie die Gewinnschwelle und -grenze.
>  Hallo ihr Lieben,
>  
> bei der o.g. Aufgabe komme ich leider gar nicht weiter.
> Beim Aufstellen der Erlösfunktion fallen schon enorme
> Probleme an.
> Ich weiß, dass E(x) = p(x) *x ,
> allerdings weiß ich nicht, was ich für p(x) geschweige
> denn  für x einsetzten soll.
>  Denkbar wäre für mich für x die größtmögliche
> Produktionsmenge einzusetzen, also 100.


Hi,
es ist einfacher, als es aussieht.

1. Schritt: Der Erlös.
Du schreibst $E(x) = p(x) * x$. Damit meinst du doch, dass sich der Erlös bei einer bestimmten Stückzahl x dadurch ergibt, dass man die Stückzahl x mit dem Stückpreis p(x) multipliziert.
Das ist vielleicht die einzige "merkwürdige" Stelle, denn den Stückpreis musst du hier als konstant 5.000€ annehmen, sonst kannst du wenig machen.
Also gilt: $p(x) = 5.000$, hängt nicht von der Stückzahl ab.

Also ist die Erlösfunktion für x verkaufte Einheiten: $E(x) = 5000*x$.

2. Schritt: Gesamtkostenfunktion

Die soll linear sein, d.h. $K(x) = a*x + b$.

Du weißt schon, dass (20/80.000) und (80/116.000) die jeweiligen Kosten sind, d.h. du musst nur diese beiden Zahlenpaare einsetzen und dann a und b ausrechnen:

Start:
$  80.000 = a*20 + b$
$116.000 = a*80 + b$

Ende:
a = 600
b = 68.000

Also ist $K(x) = 600x + 68.000$

3. Schritt: Gewinnfunktion

Das ist jetzt natürlich leicht: $G(x) = E(x) - K(x) = 4.400x - 68.000$.

4. Schritt: Gewinnschwelle und -grenze:

Naja, wenn die 0 Einheiten verkaufen, dann machen sie genau 68.000€ Verlust, und pro Stück machen sie 4.400€ gut, d.h. sie müssen mindestens 16 Geräte verkaufen, um Gewinn zu machen (rechnerisch kommt 15,... raus, damit sie break even sind).

Da der Gewinn mit jeder verkauften Einheit wächst, liegt die Gewinngrenze also bei der maximalen Stückzahl von 100 - das eingesetzt ergibt 372.000€.

lg weightgainer

p.s. Ist schwierig, das zu erklären, ohne es direkt vollständig zu lösen - aber zumindest ordentlich aufschreiben musst du es noch :-)

Bezug
                
Bezug
Kosten-, Erlös-, Gewinnfunktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Mi 16.02.2011
Autor: Domee

Hallo,

wie kommst du denn bei:

3. Schritt: Gewinnfunktion

Das ist jetzt natürlich leicht: G(x) = E(x) - K(x) = 4.400x - 68.000.

auf die 4.400?

lg domee

Bezug
                        
Bezug
Kosten-, Erlös-, Gewinnfunktio: Antwort
Status: (Antwort) fertig Status 
Datum: 07:57 Do 17.02.2011
Autor: Pappus


> Hallo,
>
> wie kommst du denn bei:
>  
> 3. Schritt: Gewinnfunktion
>  
> Das ist jetzt natürlich leicht: G(x) = E(x) - K(x) =
> 4.400x - 68.000.
>
> auf die 4.400?
>  
> lg domee

Guten Morgen!

Ich trau mich eigentlich gar nicht, Dir zu sagen, wie das Ergebnis zustande gekommen ist ...

E(x) = 5000x
K(x) = 600x + 68000

und

G(x) = E(x) - K(x)

setz jetzt mal die entsprechenden Terme in die letzte Gleichung ein.

Gruß

Pappus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]