Kopie < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:30 Sa 27.12.2014 | Autor: | Ladon |
Hallo,
ich bin im Zuge meines Studiums der algebraischen Topologie auf den Begriff der "Kopie" gestoßen. Leider wird in dem englischsprachigen Werk die Begrifflichkeit nicht definiert, sondern als bekannt vorausgesetzt.
Genau wann heißt eine Menge X Kopie einer Menge Y?
Evtl. wenn eine Bijektion zwischen den Mengen besteht?
LG
Ladon
|
|
|
|
Hi
Könntest du eventuell den Zusammenhang etwas erläutern? Ich kenne den Begriff, wenn man irgendetwas konstruiert und dabei dasselbe Objekt mehrfach verwendet: Beispiel: [mm] $\IZ^\IN [/mm] $ ist das direkte Produkt abzählbar vieler Kopien von [mm] $\IZ [/mm] $.
Oder [mm] $(0,1)\setminus\{1/2\}\cong [/mm] (0,1 [mm] )\sqcup(0,1 [/mm] )$: Als topoligische Räume ist ein offenes Intervall, aus dem ein Punk entfernt wird, homöomorph zur disjunkten Vereinigung zweier Kopien dieses Intervalls.
Ist das, was du meinst?
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:04 Sa 27.12.2014 | Autor: | Ladon |
Es geht um die Fundamentalgruppe [mm] \pi_1(X) [/mm] eines topologischen Raums X, der in kleinere Räume unterteilt wird. Einer dieser Räume sei A, der als Kreis in [mm] \IR^2 [/mm] definiert werden kann. Jetzt heißt es:
[mm] "$\pi_1(A)$ [/mm] ist eine Kopie von [mm] \IZ [/mm] erzeugt durch eine Schleife a, die einmal um A verläuft."
Ich weiß, dass die Fundamentalgruppe der [mm] S^1 [/mm] bzgl. eines bel. Basispunktes gerade [mm] \IZ [/mm] ist.
Warum heißt es hier Kopie? Bzw. was bedeutet Kopie in diesem Kontext?
LG
Ladon
|
|
|
|
|
Damit ist einfach nur gemeint, dass [mm] $\pi_1 [/mm] (A) $ frei über dem Erzeuger $ a $ ist, also isomorph zu [mm] $\IZ [/mm] $ wobei $a $ die Rolle der $1$ übernimmt.
Man sagt halt Kopie, weil es egal ist, ob es hier wirklich [mm] $\{...,-1,0,1,...\} [/mm] $ oder irgendeine andere "Kopie" hiervon ist. Die Terminologie kommt öfter mal vor, ist aber völlig uninteressant.
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:53 Sa 27.12.2014 | Autor: | Ladon |
OK. Vielen Dank!
Ich war nur etwas verwirrt, da in einem anderen Kontext eine Kopie als Bijektion definiert wurde.
LG
Ladon
|
|
|
|