www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Koordinaten transformieren
Koordinaten transformieren < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten transformieren: Tipp/Korrektur
Status: (Frage) überfällig Status 
Datum: 11:07 Sa 22.09.2012
Autor: pleaselook

Aufgabe
Zeigen sie, dass:
[mm] $\integral_{\phi=0}^{2\pi}\integral_{\theta=0}^{\pi}\integral_{r=0}^{\infty}{ r^{s+1} Y(\phi, \theta) \, f(\phi, \theta, r) \, d\phi \, d\theta\, dr}=\integral_{x=-\infty}^{\infty}\integral_{y=-\infty}^{\infty}\integral_{z=-\infty}^{\infty}{ r^{s} Y(x,y,z) \, f(x,y,z) \, dx \, dy \, dz}$, [/mm]
wobei [mm] $Y(\phi, \theta)$ [/mm] = [mm] -\wurzel{\bruch{3}{8\pi}} \sin\theta e^{i\phi}, r^2=(x^2+y^2+z^2) [/mm] und [mm] $s\in\IN$. [/mm]



Hallo Matheraum Gemeinschaft,
bei folgender Aufgabe sehe ich den Trick nicht.

Ich fange also beim ersten Integral an und stelle es in kartesischen Koordinaten dar.
Dazu muss ich erst mal [mm] $Y(\phi, \theta)$ [/mm] in kartesisches Koordinaten darstellen.
Da gilt: [mm] $\sin\theta e^{i\phi} [/mm] = [mm] \bruch{(x+iy)}{r}$, [/mm]
sollte gelten: $Y(x,y,z) = [mm] -\wurzel{\bruch{3}{8\pi}} \bruch{(x+iy)}{r}$. [/mm]


Zusätzlich gilt ja: $dx [mm] \, [/mm] dy [mm] \, [/mm] dz = [mm] r^2 \sin\phi \, d\phi \, d\theta\, [/mm] dr$, wenn man die Koordinaten von sphärischen zu kartesischen in 3D ändert.

Wenn man das nun zusammen tut, bekomme ich:
[mm] $\integral_{\phi=0}^{2\pi}\integral_{\theta=0}^{\pi}\integral_{r=0}^{\infty}{ r^{s+1}Y(\phi, \theta)\, f(\phi, \theta, r) \, d\phi \, d\theta \, d r} [/mm] =  
[mm] \integral_{x=-\infty}^{\infty}\integral_{y=-\infty}^{\infty}\integral_{z=-\infty}^{\infty}{ r^{s+1} Y(x,y,z) \, f(x,y,z) \,\bruch{1}{r^2\sin\phi} \, dx \, dy \, dz}= [/mm]  
[mm] \integral_{x=-\infty}^{\infty}\integral_{y=-\infty}^{\infty}\integral_{z=-\infty}^{\infty}{ r^{s} Y(x,y,z) \, f(x,y,z) \,\bruch{1}{r \, \sin\phi} \, dx \, dy \, dz} [/mm]

Und nun habe ich ein Problem, da [mm] $\bruch{1}{r \sin \phi} [/mm] übrig bleibt.

Frage 1: Macht mein Vorgehen überhaupt Sinn?
Frage 2: Wie kann ich den verbleibenden Term los werden?

Danke für eure Unterstützung.

        
Bezug
Koordinaten transformieren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mo 24.09.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]