www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Konvergenzradius
Konvergenzradius < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Do 23.07.2015
Autor: rollroll

Aufgabe
Welchen Konvergenzradius hat die Taylorreihe bei Entwicklung um den Punkt 1 der Funktion f: [mm] \IR [/mm] --> [mm] \IR, f(x)=sin(1+exp(\bruch{1}{1+x^2})) [/mm]

Hallo,

wie kann ich denn bei obiger Aufgabe vorgehen? In die Reihendarstellungen von sin bzw. exp einsetzen? Wie bekomme ich dann den Punkt 1 ins Spiel?

Danke schon mal

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 06:54 Fr 24.07.2015
Autor: fred97


> Welchen Konvergenzradius hat die Taylorreihe bei
> Entwicklung um den Punkt 1 der Funktion f: [mm]\IR[/mm] --> [mm]\IR, f(x)=sin(1+exp(\bruch{1}{1+x^2}))[/mm]
>  
> Hallo,
>  
> wie kann ich denn bei obiger Aufgabe vorgehen? In die
> Reihendarstellungen von sin bzw. exp einsetzen? Wie bekomme
> ich dann den Punkt 1 ins Spiel?

Betrachte f auf [mm] \IC: [/mm] setze [mm] g(z):=sin(1+exp(\bruch{1}{1+z^2})) [/mm]

g hat in z=i und in z=-i isolierte Singularitäten.

Zeige: beide sind Pole von g.

g ist also holomorph auf dem Gebiet [mm] G=\IC \setminus \{i,-i\} [/mm] und es ist 1 [mm] \in [/mm] G.

Nun sei r>0 und [mm] K_r(1):={z \in \IC: |z-1|
Bestimme das größte r mit der Eigenschaft  [mm] K_r(1) \subseteq [/mm] G.

Was sagt nun der "Satz über die Potenzreihenentwicklung holomorpher Funktionen"  über die Größe des Konvergenzradius R der Potenzreihentwicklung von g um 1 aus ?

Warum ist nun R der Konvergenzradius der Taylorreihe bei Entwicklung um den Punkt 1 der Funktion f: $ [mm] \IR [/mm] $ --> $ [mm] \IR, f(x)=sin(1+exp(\bruch{1}{1+x^2})) [/mm] $ ?

FRED

>  
> Danke schon mal


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]