www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Konvergenzgeschwindigkeit
Konvergenzgeschwindigkeit < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzgeschwindigkeit: Nullfolge Q-Linear ?
Status: (Frage) beantwortet Status 
Datum: 17:44 Di 27.01.2015
Autor: SusanneK

Aufgabe
Bestimmen Sie Q-Ordnung der folgenden Nullfolgen:
1) [mm]u_n=n^{-10}[/mm]
2) [mm]v_n=n^{10}\cdot 3^{-n}[/mm]
3) [mm]w_n=10^{-3\cdot 2^n}[/mm]
Def:
Sei [mm] (\varepsilon_k)_{k\in \mathbb{N}_0} \subset \mathbb{R}^+[/mm] eine Nullfolge, d.h. [mm]\limes_{k\rightarrow\infty} \varepsilon_k=0[/mm]. Wir sagen, die Folge konvergiert
- (mindestens) Q-linear (oder mit der Q-Ordnung p=1) mit Kontraktionskonstante [mm]\kappa[/mm], falls [mm]\limes_{k\rightarrow\infty}sup\frac{\varepsilon_k}{\varepsilon_{k-1}}=:\kappa < 1[/mm]
- Q-überlinear, falls [mm]\limes_{k\rightarrow\infty}\frac{\varepsilon_k}{\varepsilon_{k-1}}=0[/mm]
- (mindestens) mit der Q-Ordnung p>1, falls [mm]\limes_{k\rightarrow\infty}sup\frac{\varepsilon_k}{\varepsilon_{k-1}} \in \mathbb{R}[/mm]

Hallo,
ich habe die Lösungen zu diesen Aufgaben, verstehe sie aber nicht.
Mein Ansatz war folgender:
1) [mm] \frac{n^{-10}}{(n-1)^{-10}}=(\frac{n-1}{n})^{10}[/mm]

In der Lösung steht jetzt, dass diese Folge keine Q-Ordnung besitzt.
Warum ist das so ?

2) [mm]\frac{n^{10}\cdot 3^{-n}}{(n-1)^{10}\cdot 3^{-(n-1)}}=\frac{3^{n-1}\cdot n^{10}}{3^n(n-1)^{10}}=\frac{1}{3}\cdot (\frac{n}{n-1})^{10}[/mm]

In der Lösung steht Q-linear - wieso ?

3) [mm]\frac{10^{-3\cdot 2^n}}{10^{-3\cdot 2^{n-1}}}=\frac{10^{3\cdot2^{n-1}}}{10^{3\cdot 2^n}}=\frac{1}{10^6}[/mm]

In der Lösung steht Q-linear. Warum ist das nicht Q-Ordnung 6 ?

Danke im Voraus, Susanne
  

        
Bezug
Konvergenzgeschwindigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Di 27.01.2015
Autor: fred97


> Bestimmen Sie Q-Ordnung der folgenden Nullfolgen:
>  1) [mm]u_n=n^{-10}[/mm]
>  2) [mm]v_n=n^{10}\cdot 3^{-n}[/mm]
>  3) [mm]w_n=10^{-3\cdot 2^n}[/mm]
>  Def:
>  Sei [mm](\varepsilon_k)_{k\in \mathbb{N}_0} \subset \mathbb{R}^+[/mm]
> eine Nullfolge, d.h. [mm]\limes_{k\rightarrow\infty} \varepsilon_k=0[/mm].
> Wir sagen, die Folge konvergiert
>  - (mindestens) Q-linear (oder mit der Q-Ordnung p=1) mit
> Kontraktionskonstante [mm]\kappa[/mm], falls
> [mm]\limes_{k\rightarrow\infty}sup\frac{\varepsilon_k}{\varepsilon_{k-1}}=:\kappa < 1[/mm]
>  
> - Q-überlinear, falls
> [mm]\limes_{k\rightarrow\infty}\frac{\varepsilon_k}{\varepsilon_{k-1}}=0[/mm]
>  - (mindestens) mit der Q-Ordnung p>1, falls
> [mm]\limes_{k\rightarrow\infty}sup\frac{\varepsilon_k}{\varepsilon_{k-1}} \in \mathbb{R}[/mm]
>  
> Hallo,
>  ich habe die Lösungen zu diesen Aufgaben, verstehe sie
> aber nicht.
>  Mein Ansatz war folgender:
>  1) [mm]\frac{n^{-10}}{(n-1)^{-10}}=(\frac{n-1}{n})^{10}[/mm]
>  
> In der Lösung steht jetzt, dass diese Folge keine
> Q-Ordnung besitzt.

Das versteh ich auch nicht. Es ist $ [mm] \limes_{k\rightarrow\infty}sup\frac{u_k}{u_{k-1}}=1 \in \IR [/mm] $.

Also: (mindestens) mit der Q-Ordnung p>1.


>  Warum ist das so ?
>  
> 2) [mm]\frac{n^{10}\cdot 3^{-n}}{(n-1)^{10}\cdot 3^{-(n-1)}}=\frac{3^{n-1}\cdot n^{10}}{3^n(n-1)^{10}}=\frac{1}{3}\cdot (\frac{n}{n-1})^{10}[/mm]
>  
> In der Lösung steht Q-linear - wieso ?

Hier ist [mm] \kappa=\frac{1}{3}<1. [/mm]


>  
> 3) [mm]\frac{10^{-3\cdot 2^n}}{10^{-3\cdot 2^{n-1}}}=\frac{10^{3\cdot2^{n-1}}}{10^{3\cdot 2^n}}=\frac{1}{10^6}[/mm]
>  
> In der Lösung steht Q-linear. Warum ist das nicht
> Q-Ordnung 6 ?

Hier ist Hier ist [mm] \kappa=\frac{1}{10^6}<1. [/mm]

FRED


>  
> Danke im Voraus, Susanne
>      


Bezug
                
Bezug
Konvergenzgeschwindigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Di 27.01.2015
Autor: SusanneK

Hallo Fred,
jetzt verstehe ich es besser, vielen Dank für Deine Hilfe !
LG, Susanne

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]