Konvergenz von Reihen < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe 1 | Man untersuche die folgenden Reihen auf Konvergenz:
(a) [mm] \summe_{n=1}^{\infty} \bruch{(n-\wurzel{n})}{(n^2+n)} [/mm] |
Aufgabe 2 | Für jedes [mm] n\in\IN0 [/mm] ist [mm] \limes_{x \to \infty}\bruch{e^x}{x^n}=\infty [/mm] |
zu Aufgabe1:
Ich habe ähnliche Aufgaben mit Hilfe des Quotientenkriteriums lösen können, das gelingt mir in diesem Fall aber nicht. Als nächstes habe ich mir überlegt mit Hilfe einer gewählten geometrische Reihe eine Majorante zu definieren, sodass sich eine Konvergenz beweisen lässt. Ehrlich gesagt kommt ich aber zu keinem ergebnis.
zu Aufgabe2:
denke ich: für jedes M>0 gibt es ein [mm]x_0[/mm], sodass für jedes x>[mm]x_0 gilt: \bruch{e^x}{x^n} > M [/mm] das ist auch schon mein ganzer ansatz..
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:29 Mi 11.01.2006 | Autor: | leduart |
Hallo
Wo bleibt die Begrüßung, ein nettes Ende? Wir sind KEINE Dienstboten, und auch mit denen geht man netter um:
so etwa: hier ist der Dreck, ich kann nicht putzen. Ich hab auch sonst niemand gebeten zu putzen!
Trozdem:
Zur ersten versuchs mit Majoranten und Minorantenkriterium. und aufteilen der Summe.
zur zweiten die macht, wie du sie aufgeschrieben hast, keinen Sinn. soll x oder n gegen unendlich? schreib auf jeden Fall die Reihe für [mm] e^x [/mm] hin! oder benutze L'hopital, wenn ihr den hattet n mal .
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:48 Mi 11.01.2006 | Autor: | TheHarald |
erstmal danke für die schnelle antwort.
Richtig, die zeit einen netteren text zu schreiben hätte ich mir nehmen müssen. Es ist meine erste frage hier und wollte die frage möglichst kurz und präzise halten in der hoffnung es lesen sie mehr leute... wahrscheinlich war das falsch gedacht.
Bei aufgabe1 werd ich das gleich mal probieren. an das aufteilen der summe hab ich gar nicht gedacht.
Jetzt zu den Aufgaben.
Mit aufgabe 2 hast du recht, es ist ein schreibfehler: x soll gegen unendlich gehen.
|
|
|
|