www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Konvergenz uneigentliche Intgr
Konvergenz uneigentliche Intgr < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz uneigentliche Intgr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 So 01.04.2007
Autor: setine

Aufgabe
Zeige, dass folgendes uneigentliches Integral konvergiert:

[mm] $\integral_{1}^{\infty}{\frac{cos(x)}{\wurzel(x)} dx}$ [/mm]

Ich komme bei dieser Aufgabe leider nicht weiter. Als Tip wurde die partielle Integration empfohlen, doch sehe ich nicht was das bringen sollte.

Bin für jede Hilfe dankbar ;)
Gruss, Setine

        
Bezug
Konvergenz uneigentliche Intgr: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 So 01.04.2007
Autor: schachuzipus

Hallo setine,

ich glaube, das klappt mit 2facher partieller Integration:


[mm] \int{\frac{\cos(x)}{\sqrt{x}}dx}=\int{\cos(x)\cdot{}x^{-\frac{1}{2}}dx} [/mm]

Mit [mm] \cos(x)=f(x) [/mm] und [mm] x^{-\frac{1}{2}}=g'(x) [/mm] gilt:

[mm] \int{\cos(x)\cdot{}x^{-\frac{1}{2}}dx}=\cos(x)\cdot{}2\sqrt{x}-\int{-\sin(x)\cdot{}2\sqrt{x}dx} [/mm]
[mm] =\cos(x)\cdot{}2\sqrt{x}+\int{\sin(x)\cdot{}2\sqrt{x}dx} [/mm]
Das hintere Integral nun nochmal mit partieller Integration mit [mm] h(x)=2\sqrt{x} [/mm] und [mm] i'(x)=\sin(x) [/mm]

Gruß

schachuzipus


Bezug
                
Bezug
Konvergenz uneigentliche Intgr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 So 01.04.2007
Autor: setine

Hi! Danke für deine schnelle Antwort!

Ich glaube aber es hat sich ein Fehler eingeschlichen, den ich bekomme:

$ [mm] \int{\cos(x)\cdot{}x^{-\frac{1}{2}}dx}=\cos(x)\cdot{}2\wurzel(x)-\int{-\sin(x)\cdot{}2\sqrt{x}dx} [/mm] $

Hab mal so weitergerechnet, sehe aber nicht worauf du hinaus wolltest. Kannst du deine Idee etwas erläutern? Ich sehe nicht wie eines der beiden Terme verschwinden sollte durch die partielle Integration.

Bezug
                        
Bezug
Konvergenz uneigentliche Intgr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 So 01.04.2007
Autor: schachuzipus

Hallo,

hab mich 10mal verschrieben hier [bonk]

Aber ich habe eben gemerkt, dass dieser Ansatz nichts bringt, weil sich nachher alles weghebt zu 0=0

Ich wollte eigentlich darauf hinaus, eine Gleichung der Form [mm] 2\int{\frac{\cos(x)}{\sqrt{x}}dx}=" [/mm] irgendwas" zu bekommen.

Aber das klappt irgendwie nicht

[sorry]

schachuzipus

Bezug
                                
Bezug
Konvergenz uneigentliche Intgr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 So 01.04.2007
Autor: setine

Genau auf das 0=0 bin ich auch gekommen ;)

Danke trotzdem, der Gedanke zählt ja ;P

Schönen Abend noch.

Bezug
        
Bezug
Konvergenz uneigentliche Intgr: Antwort
Status: (Antwort) fertig Status 
Datum: 02:05 Mo 02.04.2007
Autor: HJKweseleit

[mm]\integral_{1}^{\infty}{\frac{cos(x)}{\wurzel(x)} dx}[/mm]
=[mm]\integral_{1}^{1,5*\pi}{\frac{cos(x)}{\wurzel(x)} dx}[/mm]+[mm]\integral_{1,5*\pi}^{2,5*\pi}{\frac{cos(x)}{\wurzel(x)} dx}[/mm]+[mm]\integral_{2,5*\pi}^{3,5*\pi}{\frac{cos(x)}{\wurzel(x)} dx}[/mm]+[mm]\integral_{3,5*\pi}^{4,5*\pi}{\frac{cos(x)}{\wurzel(x)} dx}[/mm]+...
Bezeichnet man die einzelnen Integrale mit [mm] a_{0},a_{1},a_{2},a_{3}..., [/mm] so gilt:
[mm] a_{0}=[/mm] [mm]\integral_{1}^{1,5*\pi}{\frac{cos(x)}{\wurzel(x)} dx}[/mm] ist endlich;
[mm] |a_{1}|=[/mm] [mm]|\integral_{1,5*\pi}^{2,5*\pi}{\frac{cos(x)}{\wurzel(x)} dx}[/mm]|<[mm]|\integral_{1,5*\pi}^{2,5*\pi}{\frac{cos(x)}{\wurzel(2,5*\pi)} dx}|[/mm]=[mm]|\frac{1}{\wurzel(2,5*\pi)}\integral_{1,5*\pi}^{2,5*\pi}{cos(x) dx}|[/mm]=[mm][mm] \frac{2}{\wurzel(2,5*\pi)} [/mm]

[mm] |a_{2}|=[/mm] [mm]|\integral_{2,5*\pi}^{3,5*\pi}{\frac{cos(x)}{\wurzel(x)} dx}[/mm]|<[mm]|\integral_{2,5*\pi}^{3,5*\pi}{\frac{cos(x)}{\wurzel(3,5*\pi)} dx}|[/mm]=[mm]|\frac{1}{\wurzel(3,5*\pi)}\integral_{1,5*\pi}^{2,5*\pi}{cos(x) dx}|[/mm]=[mm][mm] \frac{2}{\wurzel(3,5*\pi)} [/mm]

usw..

Das bedeutet:

die [mm] a_{i} [/mm] (i=1, 2, 3...) bilden eine alternierende Nullfolge, wobei die Beträge monoton fallen. Damit konvergiert die Reihe nach dem Leibniz-Kriterium. Somit ist das Ausgangsintegral endlich.


Bezug
                
Bezug
Konvergenz uneigentliche Intgr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 02.04.2007
Autor: setine

Vielen Dank! Auf diese geniale Idee bin ich leider nicht selbst gekommen ;)

Bezug
                        
Bezug
Konvergenz uneigentliche Intgr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 02.04.2007
Autor: HJKweseleit

Wie kommt man überhaupt darauf?
Bei solchen Aufgaben sehe ich immer die Kurve vor mir: Eine unendlche sin-Kurve, deren Berge und Täler immer kleiner werden. Das Integral ist die Summe aller Flächenstücke zwischen Graph und x-Achse, wobei die Flächen unterhalb der x-Achse negativ zählen. Also addiert und subtrahiert man immer  kleiner werdende Flächenstücke. Die Integrationsgrenzen sind gerade die Durchgänge des Graphen durch die x-Achse.

Erste Wahl bei allen Aufgaben ist eine visuelle Vorstellung des Graphen. Leider hilft das nicht immer. Mir fallen Analysis-Aufgaben daher besonders leicht, Algebra-Aufgaben kann ich nur auf Grund meiner langen Übung und leider nicht  "intuitiv" lösen. Vielleicht hilft dir diese Darlegung zusätzlich bei weiteren Aufgaben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]