www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergenz einer Funktion
Konvergenz einer Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mo 03.07.2006
Autor: didi_160

Aufgabe
Konstruiere eine Folge stetiger Funktionen [mm] f_n:[0,1] \to \IR, [/mm]
die punktweise gegen die stetige Funktion konvergiert,
obwohl   [mm] \limes_{n\rightarrow\infty} max_x_ \in_[_0_,_1_]f_n(x) [/mm] = [mm] \infty. [/mm]

Bei dieser Aufgabe weiß ich gar nicht was ich machen muß
Ich kann mit der Aussage [mm] \limes_{n\rightarrow\infty} max_x_ \in_[_0_,_1_]f_n(x) [/mm] = [mm] \infty. [/mm] gar nichts anfangen.

Wer hat eine Tipp für mich???

Besten Dank im Voraus.
Gruß didi_160
    

        
Bezug
Konvergenz einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Di 04.07.2006
Autor: didi_160

Hallo ihr da draußen,

hat denn keiner eine Idee zu dieser Aufgabe?

Gruß didi

Bezug
        
Bezug
Konvergenz einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Di 04.07.2006
Autor: Jan_Z

Hallo Didi,
ist nicht angegeben, gegen welche Funktion die Folge konvergieren soll?
Viele Grüße,
Jan

Bezug
                
Bezug
Konvergenz einer Funktion: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 20:16 Di 04.07.2006
Autor: didi_160

Also, die ganze  Aufgabe lautet wie folgt. Beim Abschreiben ist mir noch ein Fehler unterlaufen. Die Stelle habe ich fett geschrieben .

a) Untersuche die Funktionenfolge [mm] (f_n:[-1,1] \to \IR)_n_ \ge_1 [/mm]
  
[mm] f_n(x) [/mm] =  [mm] \summe_{k=1}^{n} \bruch{x^2}{(1+x^2)^k} [/mm]
auf punktweise und gleichmäßige Konvergenz.
  
b) Untersuche die Reihe von Funktionen [0,1] [mm] \to \IR [/mm]
        
            [mm] \summe_{k=1}^{ \infty} (-1)^k \bruch{x}{(x+k)} [/mm]
  
auf punktweise und absolute Konvergenz.
  
c) Konstruiere eine Folge stetiger Funktionen [mm] f_n:[0,1] \to \IR, [/mm]
die punktweise gegen eine stetige Funktion konvergiert,
obwohl   [mm] \limes_{n\rightarrow\infty} max_x_ \in_[_0_,_1_]f_n(x) [/mm]
= [mm] \infty. [/mm]

Ich kann leider nicht erkenne, dass ein Zusammenhang zwischen Aufg. c) und den Aufg. a) +b)

Trotzdem bedanke ich mich bei Dir für deine Mühe im Voraus.

Viele Grüße didi_160

Bezug
                        
Bezug
Konvergenz einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 Mi 05.07.2006
Autor: didi_160

Hi,

Hat niemand eine Idee, wie ich diese Aufgabe lösen kann???

Beste Grüße didi_160

Bezug
                        
Bezug
Konvergenz einer Funktion: doppelt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Do 06.07.2006
Autor: mathemaduenn

Hallo Didi,
Bitte keine Doppelpostings innerhalb des MR produzieren. read?i=165935 , read?t=165112
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]