www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz der Folge
Konvergenz der Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz der Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:48 Do 22.01.2009
Autor: Foster

Aufgabe
Prüfen Sie filgende FOlge auf Konvergenz

[mm] a_{n} [/mm] = [mm] (-1)^{n} \bruch{n-1}{n+1} [/mm]

wenn ich die  [mm] (-1)^{n} [/mm] mit auf den Bruch bringe sieht es doch wie folgt aus

[mm] \bruch{ (-1)^{n} (n-1)}{n+1} [/mm] und beim ausmultiplizieren so

[mm] \bruch{(-1)^{n} + 1^{n} }{n+1} [/mm]

Stimmt das?

wenn ich nun durch den größten n-wert im Nenner teile, bekomme ich keinen Wert heraus.

ist die Folge divergent? Oder mache ich einen Fehler?

        
Bezug
Konvergenz der Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Do 22.01.2009
Autor: angela.h.b.


> Prüfen Sie filgende FOlge auf Konvergenz
>  
> [mm]a_{n}[/mm] = [mm](-1)^{n} \bruch{n-1}{n+1}[/mm]
>  wenn ich die  [mm](-1)^{n}[/mm]
> mit auf den Bruch bringe sieht es doch wie folgt aus
>  
> [mm]\bruch{ (-1)^{n} (n-1)}{n+1}[/mm]

Hallo,

soweit stimmt's ja noch,

>  und beim ausmultiplizieren so
>
> [mm]\bruch{(-1)^{n} + 1^{n} }{n+1}[/mm]

aber das hier ist  falsch.
Wo hast Du denn das n gelassen? Na gut, das mag ein Tippfehler sein, aber dieses [mm] +1^n [/mm]  ist richtig schlimm. Denk nochmal darüber nach.


Hilfreich ist vielleicht dies: [mm]a_{n}[/mm] = [mm](-1)^{n} \bruch{n-1}{n+1}[/mm] = [mm](-1)^{n} \bruch{n+1-2}{n+1}[/mm].

Dann liegt es bei dieser Folge natürlich nahe, mal die gerade und die ungerade Teilfolge anzuschauen.

Gruß v. Angela



Bezug
                
Bezug
Konvergenz der Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:39 Do 22.01.2009
Autor: Foster

Wie kommst du denn auf $ [mm] (-1)^{n} \bruch{n+1-2}{n+1} [/mm] $ ?

Wahrscheinlich habe ich gerade ein Brett vor Kopf, oder es ist einfach noch zu früh. ;-))

Bezug
                        
Bezug
Konvergenz der Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 Do 22.01.2009
Autor: angela.h.b.


> Wie kommst du denn auf [mm](-1)^{n} \bruch{n+1-2}{n+1}[/mm] ?
>  
> Wahrscheinlich habe ich gerade ein Brett vor Kopf, oder es
> ist einfach noch zu früh. ;-))

Hallo,

na, daß n-1=n+1-2 ist, dürfte doch ein Geheimnis sein, oder?

Also noch deutlicher: [mm] (-1)^{n} \bruch{n-1}{n+1} =-1)^{n} \bruch{(n+1)-2}{n+1}. [/mm]

Nun mach zwei Brüche daraus.

Gruß v. Angela


Bezug
                                
Bezug
Konvergenz der Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 Do 22.01.2009
Autor: Foster

das dicke Brett ist weg ;-))))

ich kann also nun  [mm] (-1)^{n} \bruch{(n+1)-2}{n+1}. [/mm]  die (n+1) wegkürzen und erhalte

[mm] (-1)^{n} \bruch{-2}{n+1} [/mm]

das wieder auf einen Bruch geschrieben bedeutet [mm] \bruch{2^{n}}{n+1} [/mm]

ist das so richtig?

wie gehe ich nun weiter vor? Teile ich durch n ? und bekomme dann folglich keinen Wert heraus, bzw. 0/1 ? und somit ist die Folge divergent?


Bezug
                                        
Bezug
Konvergenz der Folge: Oh Graus!
Status: (Antwort) fertig Status 
Datum: 09:23 Do 22.01.2009
Autor: Loddar

Hallo Foster!


> das dicke Brett ist weg ;-))))

[eek] Nein! Wohl eher noch eins dazu gekommen ...

Aus Differenzen und Summen kürzen nur die ... weniger Schlauen!!


Beachrte doch mal o.g. Tipps und betrachte gerade und ungerade $n_$ separat.

Den Term [mm] $\bruch{n-1}{n+1}$ [/mm] kannst Du wie folgt umformen:
[mm] $$\bruch{n-1}{n+1} [/mm] \ = \ [mm] \bruch{n+1-2}{n+1} [/mm] \ = \ [mm] \bruch{n+1}{n+1}-\bruch{2}{n+1} [/mm] \ = \ [mm] 1-\bruch{2}{n+1}$$ [/mm]

Gruß
Loddar


Bezug
                                                
Bezug
Konvergenz der Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:37 Do 22.01.2009
Autor: Foster

:-((

bei n = ungerade konvergiert die Folge gegen -1
und bei n = gerade konvergiert die Folge gegen 1

ist das jetzt korrekt?

@Loddar mir ist die 1 beim kürzen abhanden gekommen.


Bezug
                                                        
Bezug
Konvergenz der Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Do 22.01.2009
Autor: angela.h.b.


> :-((
>  
> bei n = ungerade konvergiert die Folge gegen -1
>  und bei n = gerade konvergiert die Folge gegen 1
>  
> ist das jetzt korrekt?

Ja.

Gruß v. Angela

>  
> @Loddar mir ist die 1 beim kürzen abhanden gekommen.
>  


Bezug
                                                                
Bezug
Konvergenz der Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:44 Do 22.01.2009
Autor: Foster

Danke ;-))

Bezug
                                        
Bezug
Konvergenz der Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:23 Do 22.01.2009
Autor: angela.h.b.


> das dicke Brett ist weg ;-))))

Schön für Dich...

Wahrscheinlich hast Du's weggenommen, um mir damit eins auf die Rübe zu hauen. So fühle ich mich jedenfalls, wenn ich auf Deine Rechnung gucke.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]