www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz der Folge
Konvergenz der Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz der Folge: Ansatz
Status: (Frage) beantwortet Status 
Datum: 23:31 Do 07.05.2015
Autor: canyakan95

Aufgabe
Prüfen sie auf Konvergenz und geben sie ggf Grenzwert an (mit Beweis) .
[mm] \summe_{i=1}^{\infty} ((1+\bruch{1}{2n})^n-\bruch{5}{4})^n [/mm]


Hallo wie kann ich hier am besten vorgehen hoffe ihr könnt mir zeigen wie das geht..Ich glaube man kann hier das Wurzelkriterium anwenden, aber ich weis leider nicht wie..

Mfg

        
Bezug
Konvergenz der Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 01:00 Fr 08.05.2015
Autor: reverend

Hallo canyakan,

naja, geh doch mal ganz "mechanisch" vor.

> Prüfen sie auf Konvergenz und geben sie ggf Grenzwert an
> (mit Beweis) .
>  [mm]\summe_{i=1}^{\infty} ((1+\bruch{1}{2n})^n-\bruch{5}{4})^n[/mm]
>  
> Hallo wie kann ich hier am besten vorgehen hoffe ihr könnt
> mir zeigen wie das geht..Ich glaube man kann hier das
> Wurzelkriterium anwenden, aber ich weis leider nicht wie..

Tja, was ist denn [mm] \wurzel[n]{((1+\bruch{1}{2n})^n-\bruch{5}{4})^n} [/mm] ?

Das solltest Du leicht bestimmen können. Und danach mach Dich an den Grenzwert für [mm] n\to\infty. [/mm]

Dabei helfen wir Dir gern weiter. Aber erstmal bist Du dran.

Im übrigen ist es oft gut, sich erstmal die Definitionen (hier: Wurzelkriterium) klar zu machen, wenn man keinen Ansatz findet. Was muss für dieses Kriterium erfüllt sein, und was besagt es dann?

Tipp: die Reihe ist konvergent, und das ist mit dem Wurzelkriterium gut zu zeigen.

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]