www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Konvergenz Jordan. Normalform
Konvergenz Jordan. Normalform < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Jordan. Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Di 06.05.2008
Autor: Aleksa

Aufgabe
  wenn A $ [mm] \in M(kxk,\IC) [/mm] $ eine Matrix ist, betrachte die Folge $ [mm] A_n [/mm] $ = $ [mm] \summe_{j=0}^{n} \bruch{1}{j!}A^j [/mm] $
wobei $ [mm] A^0 [/mm] $ = $ [mm] E_k [/mm] $ definiert ist. Wir sagen, dass $ [mm] A_n [/mm] $ genen A $ [mm] \in M(kxk,\IC) [/mm] $ konvergiertn und schreiben lim $ [mm] A_n [/mm] $ = A, wenn für alle l,m die Folge der Einträge $ [mm] (a_{l,m})^{(n)} [/mm] $ = $ [mm] \summe_{j=0}^{n} \bruch{A^j}{j!}_{l,m} [/mm] $ gegen $ [mm] a_{l,m} \in \IC [/mm] $ konvergiert.

Behauptung: die oben definierte Folge $ [mm] A_n [/mm] $ konvergiert.

Wir schreiben: $ [mm] limA_n [/mm] $ = exp(A)

a) Zeigen Sie die Behauptung für Diagonalmatrizen A.
b)Zeigen Sie die Behauptung für Jordanblock A= J(lamda,k)
3)Zeigen Sie die Behauptung für die Matrizen in Jordanscher Normalform.  

Nun habe ich die Beh.
für Diagonalmatrizen A gezeigt exp(A)= [mm] \pmat{ e^{t_1} ...& 0 \\ 0... & e^{t_n} } [/mm]
und für einen Jordanblock
aber ich verzweifel' an der Jordanschen Normalform....muss ich die JNF erst zerlegen und dann exp(JNF) bestimmen....oder wie soll ich das machen...hat einer einen Tip??!

Danke

        
Bezug
Konvergenz Jordan. Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Mi 07.05.2008
Autor: angela.h.b.


>  wenn A [mm]\in M(kxk,\IC)[/mm] eine Matrix ist, betrachte die Folge
> [mm]A_n[/mm] = [mm]\summe_{j=0}^{n} \bruch{1}{j!}A^j[/mm]
>  wobei [mm]A^0[/mm] = [mm]E_k[/mm]
> definiert ist. Wir sagen, dass [mm]A_n[/mm] genen A [mm]\in M(kxk,\IC)[/mm]
> konvergiertn und schreiben lim [mm]A_n[/mm] = A, wenn für alle l,m
> die Folge der Einträge [mm](a_{l,m})^{(n)}[/mm] = [mm]\summe_{j=0}^{n} \bruch{A^j}{j!}_{l,m}[/mm]
> gegen [mm]a_{l,m} \in \IC[/mm] konvergiert.
>  
> Behauptung: die oben definierte Folge [mm]A_n[/mm] konvergiert.
>  
> Wir schreiben: [mm]limA_n[/mm] = exp(A)
>  
> a) Zeigen Sie die Behauptung für Diagonalmatrizen A.
>  b)Zeigen Sie die Behauptung für Jordanblock A= J(lamda,k)
>  3)Zeigen Sie die Behauptung für die Matrizen in
> Jordanscher Normalform.
> Nun habe ich die Beh.
> für Diagonalmatrizen A gezeigt exp(A)= [mm]\pmat{ e^{t_1} ...& 0 \\ 0... & e^{t_n} }[/mm]
>  
> und für einen Jordanblock
> aber ich verzweifel' an der Jordanschen Normalform....muss
> ich die JNF erst zerlegen und dann exp(JNF)
> bestimmen....oder wie soll ich das machen...hat einer einen
> Tip??!

Hallo,

Du kannst die JNF als Blockmatrix aus Jordanblöcken und Nullmatrizen betrachten. Beim Multiplizieren beeinflussen sich die verschiedenen Blöcke nicht gegenseitig.

So kannst Du dann auf die Resultate der vorhergehenden teilaufgabe zurückgreifen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]