Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 21:06 Mi 29.06.2005 | Autor: | squeezer |
Hallo
Gegeben seien folgende Reihen:
a) $ [mm] \summe_{n=1}^{ \infty} \bruch{1}{n^n *n!} *x^n$
[/mm]
b) $ [mm] \summe_{n=0}^{ \infty} \bruch{n!*x^n}{2^n} [/mm] $
c) $ [mm] \summe_{n=0}^{ \infty} \bruch{1}{ \vektor{2n \\ n}}*(x-1)^n [/mm] $
ich soll nun die Menge aller $x [mm] \in \IR$ [/mm] geben so dass die Reihe konvergiert.
Welches Konvergenzkriterium soll ich hier verwenden.
Ist das $| [mm] \bruch{x_{n+1}}{x_n}| [/mm] < [mm] \varepsilon$ [/mm] mit $0< [mm] \varepsilon<1$ [/mm] hier passend oder sinnvoll? Können Sie mir sagen wie ich hier am besten vorgehen soll, und evtl ein Beispiel geben.
Vielen Dank
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:51 Mi 29.06.2005 | Autor: | matrinx |
Hallo!
Ich denke Deine Aufgabe ist es für die Potenzreihen den Konvergenzradius zu bestimmen. Der Konvergenzradius gibt quasi an in welchem "x-Bereich" um x=0 eine Potenzreihe konvergiert.
Zur Berechnung des Konvergenzradius muss die Potenzreihe die Gestalt
[mm] \summe_{n=1}^{ \infty} a_{n}*(x-c)^n
[/mm]
haben. Bei Aufgabe a) wäre damit
[mm] a_{n} [/mm] = [mm] \bruch{1}{n^n *n!}, [/mm] c=0
Zur Berechnung des Konvergenzradius r einer Potenzreihe gibt es die Formeln
[mm] r=\bruch{1}{\limes_{n\rightarrow\infty} \wurzel[n]{|a_{n} |}}, [/mm] sowie
r= [mm] \limes_{n\rightarrow\infty}\bruch{|a_{n}|}{|a_{n+1}|}
[/mm]
sofern die Grenzwerte existieren (dabei ist [mm] \bruch{1}{0}:=\infty [/mm] und [mm] \bruch{1}{\infty}:=0 [/mm] zu setzen).
Hoffe 1. das stimmt so ;) und 2. es hilft ein wenig weiter.
Viel Erfolg damit!
|
|
|
|