www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Konvergenz
Konvergenz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:48 Mi 15.10.2008
Autor: TTaylor

Aufgabe
Beweise, dass durch
[mm]f(z)= \sum_{n=1}^{\infty}\bruch{cos n}{n^z}[/mm]

in der Halbebene{z Element von C: Re z>1} eine holomorphe Funktion f definiert ist.

Guten Morgen erstmal!

Ich verstehe, dass ich [mm]f(z)= \sum_{n=1}^{\infty}cos (n) e^{-z log n} [/mm]schreiben kann.

Da n bei log n eine natürliche Zahl ist, habe ich keine Probleme mit log.
Als nächstes betrachte ich die Partialsummen:
[mm]f_m(z)= \sum_{n=1}^{\infty}cos(n) e^{-z log n}[/mm]

Was muss ich jetzt zeigen oder wie muss ich weiter vorgehen und warum?
Aufgaben von diesem Typ sind mir völlig unklar.
Hoffe es kann mir jemand weiterhelfen.

Grüße TTaylor

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Mi 15.10.2008
Autor: fred97

Sei z [mm] \in \IC [/mm] , Re(z)>1, z = x+iy (x,y [mm] \in \IR) [/mm] ,also x>1.

Rechne bitte nach, dass   [mm] |\bruch{cos(n)}{n^z}| \le \bruch{1}{n^x}. [/mm]

Da x>1, konvergiert die Reihe [mm] \summe_{n=1}^{\infty}\bruch{1}{n^x}. [/mm]

Also ist Deine vorgelegte Reihe für Re(z)>1 punktweise konvergent.

Zeige jetzt, dass sie im Gebiet G : = {z [mm] \in \IC: [/mm] Re(z) >1} auch noch lokal gleichmäßig konvergiert,

Nach dem Konvergenzsatz von Weierstraß stellt die Reihe dann auf G eine holomorphe Funktion dar.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]