www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Kongruenzklasse
Kongruenzklasse < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenzklasse: geschnittene Kongruenzklassen
Status: (Frage) beantwortet Status 
Datum: 16:57 Fr 07.11.2008
Autor: Piezke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich hoffen das meine Frage zu Kongruenzklassen hier hereinpasst.

Es geht um den folgenden Audruck:

x [mm] \varepsilon [/mm] [a] [mm] \cap [/mm] [b]

Dies würde doch bedeuten, dass x für alle Zahlen steht, für die gilt:
x mod n = a und b.

Also das x durch n (wobei n fest ist) zwei verschiedene Reste hätte.
Aber dies wäre doch nur möglich wenn [a] = [b].

Bei der Vereinigungsmenge
x [mm] \varepsilon [/mm] [a] [mm] \cup [/mm] [b]
würde ich das ja verstehen.

Dann sollte die Menge X ja alle Zahlen beinhalten, die den Rest a oder b haben bei der Operation x modulo n.

Aber vielleicht habe ich hier auch etwas völlig missverstanden.

lg


        
Bezug
Kongruenzklasse: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Fr 07.11.2008
Autor: angela.h.b.


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich hoffen das meine Frage zu Kongruenzklassen hier
> hereinpasst.
>  
> Es geht um den folgenden Audruck:
>  
> x [mm]\varepsilon[/mm] [a] [mm]\cap[/mm]
>
> Dies würde doch bedeuten, dass x für alle Zahlen steht, für
> die gilt:
> x mod n = a und b.
>
> Also das x durch n (wobei n fest ist) zwei verschiedene
> Reste hätte.
> Aber dies wäre doch nur möglich wenn [a] = .
>
> Bei der Vereinigungsmenge
> x [mm]\varepsilon[/mm] [a] [mm]\cup[/mm]
> würde ich das ja verstehen.
>
> Dann sollte die Menge X ja alle Zahlen beinhalten, die den
> Rest a oder b haben bei der Operation x modulo n.
>
> Aber vielleicht habe ich hier auch etwas völlig
> missverstanden.
>
> lg
>   

Hallo,

[willkommenmr].

Nein, ich habe nicht den Eindruck, daß Du etwas mißverstanden hast.

[mm] x\in [a]\cap[b] [/mm] bedeutet:  [mm] x\in [/mm] [a] und [mm] x\in [/mm] [b].

Also gibt es ganze Zahlen [mm] z_1, z_2 [/mm] mit

[mm] x-a=z_1*n [/mm] und [mm] x-b=z_2*n [/mm]  ==> a-b ist ein Vielfaches von n.

Also liegen die beiden in derselben Äquivalenzklasse, womit dann [a]=[b] ist.


Das Ergebnis ist unbedingt merkenswert: zwei Äquivalenzklassen sind entweder gleich, oder sie haben kein gemeinsames Element.

Auch bei der Vereinigung liegst Du richtig.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]