Kongruenz < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:39 Fr 17.03.2006 | Autor: | ronald |
Aufgabe | Für welche Elemente a [mm] \in \IZ_{132} [/mm] gilt [mm] a^{4000001}=a. [/mm] |
Hallo,
kann mir vielleicht jemand einen Tipp für diese Aufgabe geben? Ich sitze schon seit ne weile dran und habe bis jetzt ausser die trivialen Lösungen 0 und 1 keine weitere finden können.
Danke!
LG
Ronald
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:45 Fr 17.03.2006 | Autor: | ronald |
Hallo Felix,
danke für die Tipps. Aber ich scheitere schon an der Problemzerlegung. Ich denke ich muss mod irgendwie einbringen und den Exponenten geschickt zerlegen. Leider weiß ich nicht, wie ich den chinesischen Restsatz hier anwenden soll. Kannst du vielleich noch bisschen mehr details zum ersten Tipp verraten?
danke
Grüsse
Ronald
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:10 Fr 17.03.2006 | Autor: | felixf |
Hallo Ronald,
> danke für die Tipps. Aber ich scheitere schon an der
> Problemzerlegung. Ich denke ich muss mod irgendwie
> einbringen und den Exponenten geschickt zerlegen. Leider
> weiß ich nicht, wie ich den chinesischen Restsatz hier
> anwenden soll. Kannst du vielleich noch bisschen mehr
> details zum ersten Tipp verraten?
du musst auch beim ersten Schritt nicht den Exponenten zerlegen (das kommt erst spaeter), sondern den Modulus. Es ist ja $132 = [mm] 2^2 \cdot [/mm] 3 [mm] \cdot [/mm] 11$, womit nach dem Chinesischen Restsatz die Gleichung [mm] $x^{4000001} \equiv [/mm] x [mm] \pmod{132}$ [/mm] aequivalent ist zu dem Gleichungssystem [mm] $x^{4000001} \equiv [/mm] x [mm] \pmod{2^2}$, $x^{4000001} \equiv [/mm] x [mm] \pmod{3}$, $x^{4000001} \equiv [/mm] x [mm] \pmod{11}$.
[/mm]
Jetzt kannst du jede der einzelnen Gleichungen betrachten und sie loesen, und dann die Loesungen (du brauchst ja nur die Anzahl zwischen $0$ und Modulus (exklusive)) zu Loesungen der Originalgleichung zusammenzusetzen (bzw. nur die Anzahl herausfinden).
Kommst du damit weiter?
LG Felix
|
|
|
|