Komposition eine Abbildung! < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo Matheraum, ich habe mal eine Frage bezüglich einer Aufgabe, in der es um die Komposition einer Abbildung geht:
Sei f eine Abbildung einer Menge X in sich. Zeigen Sie: Wenn [mm] f\circ{f} [/mm] = id gilt, so ist f bijektiv.
Ich habe gedacht, da [mm] f\circ{f} [/mm] eine identische Abbildung sein muss, müsste das "linke" f ja eigentlich eine inverse Abbildung von f sein, und die einzigste Abbildung die ich mir gedacht habe, wäre f(x)=x.
Ich bin mir sicher, dass das so nicht stimmen kann, aber ich weiss auch nicht wie es sonst gemeint sein kann.
Vielen Dank für Antworten.
|
|
|
|
> Sei f eine Abbildung einer Menge X in sich. Zeigen Sie:
> Wenn [mm]f\circ{f}[/mm] = id gilt, so ist f bijektiv.
>
>
> Ich habe gedacht, da [mm]f\circ{f}[/mm] eine identische Abbildung
> sein muss, müsste das "linke" f ja eigentlich eine inverse
> Abbildung von f sein, und die einzigste Abbildung die ich
> mir gedacht habe, wäre f(x)=x.
Ein anderes Beispiel ist [mm]f\colon \IC \to \IC[/mm], [mm]f(z) = \overline{z}[/mm].
Zum Beweis: Sei also [mm]f\colon X \to X[/mm] mit [mm]f \circ f = id[/mm].
Jetzt musst du zeigen, dass [mm]f[/mm] injektiv und surjektiv ist.
Zur Injektivität:
Seien [mm]x,y \in X[/mm] mit [mm]f(x) = f(y)[/mm]. Dann folgt [mm]f(f(x)) = f(f(y))[/mm] und somit ...
Zur Surjektivität:
Sei [mm]y \in X[/mm]. Wir müssen ein [mm]x \in X[/mm] finden mit [mm]f(x) = y[/mm]. Es gilt aber [mm]f(f(y)) = y[/mm], ...
|
|
|
|
|
Erstmal Danke für die schnelle Antwort.
Die Injektivität ist klar, es kann keine x,y aus X geben, für die gilt f(x)=f(y), da es sonst keine identische Abbildung mehr wäre, daraus folgt x=y.
Zur Surjektivität hab ich noch eine Frage, es muss doch gezeigt werden, dass es für jedes y aus X ein x aus X gibt, sodass gilt f(f(y))=y.
Ist es denn damit schon gezeigt, denn fof=id ist ja Voraussetzung gewesen, oder was sollte man hier noch zeigen?
Danke
|
|
|
|