www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Kompl. v. Algor. Konstanten
Kompl. v. Algor. Konstanten < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompl. v. Algor. Konstanten: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:01 Mo 09.02.2015
Autor: NefetsClaxon

Aufgabe
Ist g(n) = [mm] 2n^2 [/mm] + 7n − 10 und f(n) = [mm] n^2, [/mm] so gilt:
g(n) ∈ O(f(n)),
denn mit c = 3 und ab n0 = 5 gilt:
[mm] 2n^2 [/mm] + 7n − 10 ≤ c · [mm] n^2. [/mm]
Man sagt: Die Funktion g(n) liegt in [mm] O(n^2). [/mm]

Hallo!

wie bestimmt man hier c und n0? Geht das überhaupt rechnerisch oder muss man das raten?

        
Bezug
Kompl. v. Algor. Konstanten: Löschen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Mo 09.02.2015
Autor: NefetsClaxon

Hallo!

Diese Frage bitte löschen! Ich hatte sie schon mal gestellt, aber nicht mehr gefunden und deswegen gedacht, dass ich vergessen hätte, auf "Senden" zu klicken.

Sorry!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]